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Chapter 1

Snort Overview

This manual is based on Writing Snort Rules by Martin Roesch and further work from Chris Green <cmg@snort.org>.
It is now maintained by Brian Caswell <bmc@snort.org>. If you have a better way to say something or find that
something in the documentation is outdated, drop us a line and we will update it. If you would like to submit patches
for this document, you can find the latest version of the documentation in LATEX format in the Snort CVS repository at
/doc/snort_manual.tex. Small documentation updates are the easiest way to help out the Snort Project.

1.1 Getting Started

Snort really isn’t very hard to use, but there are a lot of command line options to play with, and it’s not always obvious
which ones go together well. This file aims to make using Snort easier for new users.

Before we proceed, there are a few basic concepts you should understand about Snort. Snort can be configured to run
in three modes:

• Sniffer mode, which simply reads the packets off of the network and displays them for you in a continuous
stream on the console (screen).

• Packet Logger mode, which logs the packets to disk.

• Network Intrusion Detection System (NIDS) mode, the most complex and configurable configuration, which
allows Snort to analyze network traffic for matches against a user-defined rule set and performs several actions
based upon what it sees.

• Inline Mode, which obtains packets from iptables instead of from libpcap and then causes iptables to drop or
pass packets based on Snort rules that use inline-specific rule types.

1.2 Sniffer Mode

First, let’s start with the basics. If you just want to print out the TCP/IP packet headers to the screen (i.e. sniffer mode),
try this:

./snort -v

This command will run Snort and just show the IP and TCP/UDP/ICMP headers, nothing else. If you want to see the
application data in transit, try the following:

./snort -vd

6



This instructs Snort to display the packet data as well as the headers. If you want an even more descriptive display,
showing the data link layer headers, do this:

./snort -vde

(As an aside, these switches may be divided up or smashed together in any combination. The last command could also
be typed out as:

./snort -d -v -e

and it would do the same thing.)

1.3 Packet Logger Mode

OK, all of these commands are pretty cool, but if you want to record the packets to the disk, you need to specify a
logging directory and Snort will automatically know to go into packet logger mode:

./snort -dev -l ./log

Of course, this assumes you have a directory named log in the current directory. If you don’t, Snort will exit with
an error message. When Snort runs in this mode, it collects every packet it sees and places it in a directory hierarchy
based upon the IP address of one of the hosts in the datagram.

If you just specify a plain -l switch, you may notice that Snort sometimes uses the address of the remote computer
as the directory in which it places packets and sometimes it uses the local host address. In order to log relative to the
home network, you need to tell Snort which network is the home network:

./snort -dev -l ./log -h 192.168.1.0/24

This rule tells Snort that you want to print out the data link and TCP/IP headers as well as application data into the
directory ./log, and you want to log the packets relative to the 192.168.1.0 class C network. All incoming packets
will be recorded into subdirectories of the log directory, with the directory names being based on the address of the
remote (non-192.168.1) host.

4! NOTE
Note that if both the source and destination hosts are on the home network, they are logged to a directory
with a name based on the higher of the two port numbers or, in the case of a tie, the source address.

If you’re on a high speed network or you want to log the packets into a more compact form for later analysis, you
should consider logging in binary mode. Binary mode logs the packets in tcpdump format to a single binary file in the
logging directory:

./snort -l ./log -b

Note the command line changes here. We don’t need to specify a home network any longer because binary mode
logs everything into a single file, which eliminates the need to tell it how to format the output directory structure.
Additionally, you don’t need to run in verbose mode or specify the -d or -e switches because in binary mode the entire
packet is logged, not just sections of it. All you really need to do to place Snort into logger mode is to specify a logging
directory at the command line using the -l switch—the -b binary logging switch merely provides a modifier that tells
Snort to log the packets in something other than the default output format of plain ASCII text.
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Once the packets have been logged to the binary file, you can read the packets back out of the file with any sniffer that
supports the tcpdump binary format (such as tcpdump or Ethereal). Snort can also read the packets back by using the
-r switch, which puts it into playback mode. Packets from any tcpdump formatted file can be processed through Snort
in any of its run modes. For example, if you wanted to run a binary log file through Snort in sniffer mode to dump the
packets to the screen, you can try something like this:

./snort -dv -r packet.log

You can manipulate the data in the file in a number of ways through Snort’s packet logging and intrusion detection
modes, as well as with the BPF interface that’s available from the command line. For example, if you only wanted to
see the ICMP packets from the log file, simply specify a BPF filter at the command line and Snort will only see the
ICMP packets in the file:

./snort -dvr packet.log icmp

For more info on how to use the BPF interface, read the Snort and tcpdump man pages.

1.4 Network Intrusion Detection Mode

To enable Network Intrusion Detection (NIDS) mode so that you don’t record every single packet sent down the wire,
try this:

./snort -dev -l ./log -h 192.168.1.0/24 -c snort.conf

where snort.conf is the name of your rules file. This will apply the rules configured in the snort.conf file to each
packet to decide if an action based upon the rule type in the file should be taken. If you don’t specify an output
directory for the program, it will default to /var/log/snort.

One thing to note about the last command line is that if Snort is going to be used in a long term way as an IDS, the
-v switch should be left off the command line for the sake of speed. The screen is a slow place to write data to, and
packets can be dropped while writing to the display.

It’s also not necessary to record the data link headers for most applications, so you can usually omit the -e switch, too.

./snort -d -h 192.168.1.0/24 -l ./log -c snort.conf

This will configure Snort to run in its most basic NIDS form, logging packets that trigger rules specified in the
snort.conf in plain ASCII to disk using a hierarchical directory structure (just like packet logger mode).

1.4.1 NIDS Mode Output Options

There are a number of ways to configure the output of Snort in NIDS mode. The default logging and alerting mecha-
nisms are to log in decoded ASCII format and use full alerts. The full alert mechanism prints out the alert message in
addition to the full packet headers. There are several other alert output modes available at the command line, as well
as two logging facilities.

Alert modes are somewhat more complex. There are seven alert modes available at the command line: full, fast,
socket, syslog, console, cmg, and none. Six of these modes are accessed with the -A command line switch. These
options are:
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Option Description

-A fast Fast alert mode. Writes the alert in a simple format with a timestamp, alert message, source and
destination IPs/ports.

-A full Full alert mode. This is the default alert mode and will be used automatically if you do not specify
a mode.

-A unsock Sends alerts to a UNIX socket that another program can listen on.
-A none Turns off alerting.
-A console Sends “fast-style” alerts to the console (screen).
-A cmg Generates “cmg style” alerts.

Packets can be logged to their default decoded ASCII format or to a binary log file via the -b command line switch.
To disable packet logging altogether, use the -N command line switch.

For output modes available through the configuration file, see Section 2.7.

4! NOTE
Command line logging options override any output options specified in the configuration file. This allows
debugging of configuration issues quickly via the command line.

To send alerts to syslog, use the -s switch. The default facilities for the syslog alerting mechanism are LOG AUTHPRIV
and LOG ALERT. If you want to configure other facilities for syslog output, use the output plugin directives in the
rules files. See Section 2.3.1 for more details on configuring syslog output.

For example, use the following command line to log to default (decoded ASCII) facility and send alerts to syslog:

./snort -c snort.conf -l ./log -h 192.168.1.0/24 -s

As another example, use the following command line to log to the default facility in /var/log/snort and send alerts to a
fast alert file:

./snort -c snort.conf -A fast -h 192.168.1.0/24

1.4.2 Understanding Standard Alert Output

When Snort generates an alert message, it will usually look like the following:

[**] [116:56:1] (snort_decoder): T/TCP Detected [**]

The first number is the Generator ID, this tells the user what component of Snort generated this alert. For a list of
GIDs, please read etc/generators in the Snort source. In this case, we know that this event came from the “decode”
(116) component of Snort.

The second number is the Snort ID (sometimes referred to as Signature ID). For a list of preprocessor SIDs, please
see etc/gen-msg.map. Rule-based SIDs are written directly into the rules with the ”sid” option. In this case, “56”
represents a T/TCP event.

The third number is the revision ID. This number is primarily used when writing signatures, as each rendition of the
rule should increment this number with the “rev” option.

1.4.3 High Performance Configuration

If you want Snort to go fast (like keep up with a 1000 Mbps connection), you need to use unified logging and a unified
log reader such as barnyard. This allows Snort to log alerts in a binary form as fast as possible while another program
performs the slow actions, such as writing to a database.
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If you want a text file that’s easily parsable, but still somewhat fast, try using binary logging with the “fast” output
mechanism.

This will log packets in tcpdump format and produce minimal alerts. For example:

./snort -b -A fast -c snort.conf

1.4.4 Changing Alert Order

The default way in which Snort applies its rules to packets may not be appropriate for all installations. The Alert rules
are applied first, then the Pass rules, and finally, Log rules are applied. This sequence is somewhat counterintuitive,
but it’s a more foolproof method than allowing a user to write a hundred alert rules that are then disabled by an errant
pass rule. For more information on rule types, see Section 3.2.1.

If you know what you’re doing, you can use the -o switch to change the default rule application behavior to apply Pass
rules, then Alert rules, then Log rules:

./snort -d -h 192.168.1.0/24 -l ./log -c snort.conf -o

1.5 Inline Mode

Snort 2.3.0 RC1 integrated the intrusion prevention system (IPS) capability of snort inline into the official Snort
project. Snort inline obtains packets from iptables instead of libpcap and then uses new rule types to help iptables pass
or drop packets based on Snort rules.

In order for snort inline to work properly, you must download and compile the iptables code to include “make install-
devel” (http://www.iptables.org). This will install the libipq library that allows snort inline to interface with
iptables. Also, you must build and install LibNet, which is available from http://www.packetfactory.net.

There are three rule types you can use when running Snort with snort inline:

• drop - The drop rule type will tell iptables to drop the packet and log it via usual Snort means.

• reject - The reject rule type will tell iptables to drop the packet, log it via usual Snort means, and send a TCP
reset if the protocol is TCP or an icmp port unreachable if the protocol is UDP.

• sdrop - The sdrop rule type will tell iptables to drop the packet. Nothing is logged.

4! NOTE
You can also replace sections of the packet payload when using snort inline. See Section 1.5.3 for more
information.

When using a reject rule, there are two options you can use to send TCP resets:

• You can use a RAW socket (the default behavior for snort inline), in which case you must have an interface that
has an IP address assigned to it. If there is not an interface with an IP address assigned with access to the source
of the packet, the packet will be logged and the reset packet will never make it onto the network.

• You can also now perform resets via a physical device when using iptables. We take the indev name from
ip queue and use this as the interface on which to send resets. We no longer need an IP loaded on the bridge,
and can remain pretty stealthy as the config layer2 resets in snort inline.conf takes a source MAC address which
we substitue for the MAC of the bridge. For example:

config layer2resets
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tells snort inline to use layer2 resets and uses the MAC address of the bridge as the source MAC in the packet,
and:

config layer2resets: 00:06:76:DD:5F:E3

will tell snort inline to use layer2 resets and uses the source MAC of 00:06:76:DD:5F:E3 in the reset packet.

1.5.1 Snort Inline Rule Application Order

The current rule application order is:

->activation->dynamic->drop->sdrop->reject->alert->pass->log

This will ensure that a drop rule has precedence over an alert or log rule. You can use the -o flag to the rule application
order to:

->activation->dynamic->pass->drop->sdrop->reject->alert->log

1.5.2 New STREAM4 Options for Use with Snort Inline

When using snort inline, you can use two additional stream4 options:

• inline state (no arguments)
This option causes Snort to drop TCP packets that are not associated with an existing TCP session, and is not a
valid TCP initiator.

• midstream drop alerts (no arguments)
By default, when running in inline mode, Snort will silently drop any packets that were picked up in midstream
and would have caused an alert to be generated, if not for the ’flow: established’ option. This is to mitigate
stick/snot type attacks when the user hasn’t enabled inline state. If you want to see the alerts that are silently
dropped, enable this keyword. Note that by enabling this keyword, you have opened yourself up to stick/snot-
type attacks.

For more information about Stream4, see Section 2.1.3.

1.5.3 Replacing Packets with Snort Inline

Additionally, Jed Haile’s content replace code allows you to modify packets before they leave the network. For
example:

alert tcp any any <> any 80 (msg: "tcp replace"; content:"GET"; replace:"BET";)
alert udp any any <> any 53 (msg: "udp replace"; \

content: "yahoo"; replace: "xxxxx";)

These rules will comb tcp port 80 traffic looking for GET, and udp port 53 traffic looking for yahoo. Once they are
found, they are replaced with BET and xxxxx, respectively. The only catch is that the replace must be the same length
as the content.

1.5.4 Installing Snort Inline

To install Snort inline, use the following command:

./configure --enable-inline
make
make install
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1.5.5 Running Snort Inline

First, you need to ensure that the ip queue module is loaded. Then, you need to send traffic to snort inline using the
QUEUE target. For example,

iptables -A OUTPUT -p tcp --dport 80 -j QUEUE

sends all TCP traffic leaving the firewall going to port 80 to the QUEUE target. This is what sends the packet from
kernel space to user space (snort inline). A quick way to get all outbound traffic going to the QUEUE is to use the
rc.firewall script created and maintained by the Honeynet Project (http://www.honeynet.org/papers/honeynet/
tools/) This script is well-documented and allows you to direct packets to snort inline by simply changing the
QUEUE variable to yes.

Finally, start snort inline.

snort_inline -QDc ../etc/drop.conf -l /var/log/snort

You can use the following command line options:

• -Q - Gets packets from iptables.

• -D - Runs snort inline in daemon mode. The process ID is stored at /var/run/snort inline.pid

• -c - Reads the following configuration file.

• -l - Logs to the following directory.

Ideally, snort inline will be run using only its own drop.rules. If you want to use Snort for just alerting, a separate
process should be running with its own ruleset.

1.5.6 Using the Honeynet Snort Inline Toolkit

The Honeynet Snort Inline Toolkit is a statically compiled snort inline binary put together by the Honeynet Project
for the Linux operating system. It comes with a set of drop.rules, the snort inline binary, a snort-inline rotation
shell script, and a good README. It can be found at:

http://www.honeynet.org/papers/honeynet/tools/

1.5.7 Troubleshooting Snort Inline

If you run snort inline and see something like this:

Initializing Output Plugins!
Reading from iptables
Log directory = /var/log/snort
Initializing Inline mode
InlineInit: : Failed to send netlink message: Connection refused

More than likely, the ip queue module is not loaded or ip queue support is not compiled into your kernel. Either
recompile your kernel to support ip queue, or load the module.

The ip queue module is loaded by executing:

insmod ip_queue

Also, if you want to ensure snort inline is getting packets, you can start it in the following manner:

snort_inline -Qvc <configuration file>

This will display the header of every packet that snort inline sees.
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1.6 Miscellaneous

1.6.1 Running in Daemon mode

If you want to run Snort in daemon mode, you can add -D switch to any combination described in the previous sections.
Please notice that if you want to be able to restart Snort by sending a SIGHUP signal to the daemon, you must specify
the full path to the Snort binary when you start it, for example:

/usr/local/bin/snort -d -h 192.168.1.0/24 \
-l /var/log/snortlogs -c /usr/local/etc/snort.conf -s -D

Relative paths are not supported due to security concerns.

1.6.2 Obfuscating IP address printouts

If you need to post packet logs to public mailing lists, you might want to use the -O switch. This switch obfuscates
your IP addresses in packet printouts. This is handy if you don’t want people on the mailing list to know the IP
addresses involved. You can also combine the -O switch with the -h switch to only obfuscate the IP addresses of hosts
on the home network. This is useful if you don’t care who sees the address of the attacking host. For example, you
could use the following command to read the packets from a log file and dump them to the screen, obfuscating only
the addresses from the 192.168.1.0/24 class C network:

./snort -d -v -r snort.log -O -h 192.168.1.0/24

1.6.3 Specifying multiple-instance identifiers

In Snort v2.4, a -G command line option was added that specifies an instance identifier for the event logs. This option
can be used when running multiple instances of snort, either on different CPUs, or on same CPU but different interface.
Each snort instance will use the value specified to generate unique event IDs. Users can specify either a decimal value
(-G 1) or hex value preceded by 0x (-G 0x11).

1.7 More Information

Chapter 2 contains much information about many configuration options available in the configuration file. The Snort
manual page and the output of snort -? contain information that can help you get Snort running in several different
modes.

4! NOTE
In many shells, a backslash (\) is needed to escape the ?, so you may have to type snort -\? instead of
snort -? for a list of Snort command line options.

The Snort web page (http://www.snort.org) and the Snort User’s mailing list (http://marc.theaimsgroup.
com/?l=snort-users at snort-users@lists.sourceforge.net provide informative announcements as well as a
venue for community discussion and support. There’s a lot to Snort, so sit back with a beverage of your choosing and
read the documentation and mailing list archives.

13



Chapter 2

Configuring Snort

2.0.1 Includes

The include keyword allows other rule files to be included within the rules file indicated on the Snort command line.
It works much like an #include from the C programming language, reading the contents of the named file and adding
the contents in the place where the include statement appears in the file.

Format

include: <include file path/name>

4! NOTE
Note that there is no semicolon at the end of this line.

Included files will substitute any predefined variable values into their own variable references. See Section (2.0.2) for
more information on defining and using variables in Snort rule files.

2.0.2 Variables

Variables may be defined in Snort. These are simple substitution variables set with the var keyword as shown in
Figure 2.1.

Format

var: <name> <value>

var MY_NET [192.168.1.0/24,10.1.1.0/24]
alert tcp any any -> $MY_NET any (flags:S; msg:"SYN packet";)

Figure 2.1: Example of Variable Definition and Usage

Rule variable names can be modified in several ways. You can define meta-variables using the $ operator. These can
be used with the variable modifier operators ? and -, as described in the following table:
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Variable Syntax Description

$var Defines a meta-variable.
$(var) Replaces with the contents of variable var.
$(var:-default) Replaces the contents of the variable var with “default” if var is undefined.
$(var:?message) Replaces with the contents of variable var or prints out the error message and exits.

See Figure 2.2 for an example of advanced variable usage in action.

var MY_NET 192.168.1.0/24
log tcp any any -> $(MY_NET:?MY_NET is undefined!) 23

Figure 2.2: Figure Advanced Variable Usage Example

2.0.3 Config

Many configuration and command line options of Snort can be specified in the configuration file.

Format

config <directive> [: <value>]

Directives

Table 2.1: Config Directives

Command Example Description

order config order: pass alert log
activation

Changes the order that rules are evalu-
ated.

alertfile config alertfile: alerts Sets the alerts output file.
classification config classification:

misc-activity,Misc activity,3
See Table 3.2 for a list of classifications.

dump chars only config dump chars only Turns on character dumps (snort -C).
dump payload config dump payload Dumps application layer (snort -d).
decode data link config decode data link Decodes Layer2 headers (snort -e).
bpf file config bpf file: filters.bpf Specifies BPF filters (snort -F).
daemon config daemon Forks as a daemon (snort -D).
interface config interface: xl0 Sets the network interface (snort -i).
alert with interface name config alert with interface name Appends interface name to alert (snort

-I).
logdir config logdir: /var/log/snort Sets the logdir (snort -l).
umask config umask: 022 Sets umask when running (snort -m).
pkt count config pkt count: 13 Exits after N packets (snort -n).
nolog config nolog Disables logging. Note: Alerts will still

occur. (snort -N).
obfuscate config obfuscate Obfuscates IP Addresses (snort -O).
no promisc config no promisc Disables promiscuous mode (snort

-p).
quiet config quiet Disables banner and status reports

(snort -q).
chroot config chroot: /home/snort Chroots to specified dir (snort -t).
checksum mode config checksum mode : all Types of packets to calculate checksums.

Values: none, noip, notcp, noicmp,
noudp, ip, tcp, udp, icmp or all.
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set gid config set gid: 30 Changes GID to specified GID (snort
-g).

set uid set uid: snort user Sets UID to <id> (snort -u).
utc config utc Uses UTC instead of local time for

timestamps (snort -U).
verbose config verbose Uses verbose logging to STDOUT

(snort -v).
dump payload verbose config dump payload verbose Dumps raw packet starting at link layer

(snort -X).
show year config show year Shows year in timestamps (snort -y).
stateful config stateful Sets assurance mode for stream4 (est).

See the stream4 reassemble configura-
tion 2.3.

min ttl config min ttl:30 Sets a Snort-wide minimum ttl to ignore
all traffic.

disable decode alerts config disable decode alerts Turns off the alerts generated by the de-
code phase of Snort.

disable tcpopt experimental
alerts

config disable tcpopt experiment
al alerts

Turns off alerts generated by experimen-
tal TCP options.

disable tcpopt experimental
alerts

config disable tcpopt experiment
al alerts

Turns off alerts generated by experimen-
tal TCP options.

disable tcpopt obsolete
alerts

config disable tcpopt obsolete
alerts

Turns off alerts generated by obsolete
TCP options.

disable tcpopt ttcp alerts config disable tcpopt ttcp alerts Turns off alerts generated by T/TCP op-
tions.

disable ttcp alerts config disable ttcp alerts Turns off alerts generated by T/TCP op-
tions.

disable tcpopt alerts config disable tcpopt alerts Disables option length validation alerts.
disable ipopt alerts config disable ipopt alerts Disables IP option length validation

alerts.
disable decode drops config disable decode drops Disables the dropping of bad packets

identified by decoder (only applicable in
inline mode).

disable tcpopt experimental
drops

config disable tcpopt experi
mental drops

Disables the dropping of bad packets
with obsolete TCP option (only applica-
ble in inline mode).

disable ttcp drops disable ttcp drops Disables the dropping of bad packets
with TCP echo option (only applicable
in inline mode).

disable tcpopt drops config disable tcpopt drops Disables the dropping of bad packets
with bad/truncated TCP option (only ap-
plicable in inline mode).

disable ipopt drops config disable ipopt drops Disables the dropping of bad packets
with bad/truncated IP options (only ap-
plicable in inline mode).

flowbits size config flowbits size: 128 Specifies the maximum number of flow-
bit tags that can be used within a ruleset.
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event queue config event queue: max queue
512 log 100 order events
priority

Specifies conditions about Snort’s event
queue. You can use the following op-
tions:

• max queue <integer> (max
events supported)

• log <integer> (number of
events to log)

• order events
[priority|content length]
(how to order events within the
queue)

See Section 3.10 for more information
and examples.

layer2resets config layer2resets:
00:06:76:DD:5F:E3

This option is only available when run-
ning in inline mode. See Section 1.5.

detection config detection:
search-method ac
no stream inserts
max queue events 128

Makes changes to the detection engine.
The following options can be used:

• search-method<ac|mwm|lowmem>

• no stream inserts

• max queue events<integer>

asn1 config asn1:256 Specifies the maximum number of nodes
to track when doing ASN1 decoding.
See Section 2.1.12 for more information
and examples.

snaplen config snaplen: 2048 Set the snaplength of packet, same effect
as -P <snaplen> option.

read bin file config read bin file:
test alert.pcap

Specifies a pcap file to use (instead of
reading from network), same effect as -
r <tf> option.

reference config reference: myref
http://myurl.com/?id=

Adds a new reference system to Snort.

ignore ports config ignore ports: udp 1:17
53

Specifies ports to ignore (useful for ig-
noring noisy NFS traffic). Specify the
protocol (tcp, udp, ip, or icmp), followed
by a list of ports. Port ranges are sup-
ported.
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2.1 Preprocessors

Preprocessors were introduced in version 1.5 of Snort. They allow the functionality of Snort to be extended by allowing
users and programmers to drop modular plugins into Snort fairly easily. Preprocessor code is run before the detection
engine is called, but after the packet has been decoded. The packet can be modified or analyzed in an out-of-band
manner using this mechanism.

Preprocessors are loaded and configured using the preprocessor keyword. The format of the preprocessor directive
in the Snort rules file is:

preprocessor <name>: <options>

preprocessor minfrag: 128

Figure 2.3: Preprocessor Directive Format Example

2.1.1 Frag2

4! NOTE
Frag2 is deprecated in Snort 2.4.0 and later in favor of Frag3. See Section 2.1.2 for more information about
Frag3.

2.1.2 Frag3

The Frag3 preprocessor is a target-based IP defragmentation module for Snort. Frag3 is intended as a replacement for
the frag2 defragmentation module and was designed with the following goals:

1. Faster execution that frag2 with less complex data management.

2. Target-based host modeling anti-evasion techniques.

The frag2 preprocessor used splay trees extensively for managing the data structures associated with defragmenting
packets. Splay trees are excellent data structures to use when you have some assurance of locality of reference for the
data that you are handling but in high speed, heavily fragmented environments the nature of the splay trees worked
against the system and actually hindered performance. Frag3 uses the sfxhash data structure and linked lists for data
handling internally which allows it to have much more predictable and deterministic performance in any environment
which should aid us in managing heavily fragmented environments.

Target-based analysis is a relatively new concept in network-based intrusion detection. The idea of a target-based
system is to model the actual targets on the network instead of merely modeling the protocols and looking for attacks
within them. When IP stacks are written for different operating systems, they are usually implemented by people who
read the RFCs and then their interpretation of what the RFC outlines into code. Unfortunately, there are ambiguities
in the way that the RFCs define some of the edge conditions that may occurr and when this happens differnt people
implement certain aspects of their IP stacks differently. For an IDS this is a big problem.

In an environment where the attacker can determine what style of IP defragmentation being used on a particular target,
the attacker can try to fragment packets such that the target will put them back together in a specific manner while any
passive systems trying to model the host traffic have to guess which way the target OS is going to handle the overlaps
and retransmits. As I like to say, if the attacker has more information about the targets on a network than the IDS does, it
is possible to evade the IDS. This is where the idea for “target-based IDS” came from. For more detail on this issue and
how it affects IDSes, check out the famous Ptacek & Newsham paper at http://www.snort.org/docs/idspaper/.
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The basic idea behind target-based IDS is that we tell the IDS information about hosts on the network so that it can
avoid Ptacek & Newsham style evasion attacks based on information about how an individual target IP stack operates.
Vern Paxson and Umesh Shankar did a great paper on this very topic in 2003 that detailed mapping the hosts on a net-
work and determining how their various IP stack implementations handled the types of problems seen in IP defragmen-
tation and TCP stream reassembly. Check it out at http://www.icir.org/vern/papers/activemap-oak03.pdf.

We can also present the IDS with topology information to avoid TTL-based evasions and a variety of other issues, but
that’s a topic for another day. Once we have this information we can start to really change the game for these complex
modeling problems.

Frag3 was implemented to showcase and prototype a target-based module within Snort to test this idea.

Frag 3 Configuration

Frag3 configuration is somewhat more complex than frag2. There are at least two preprocessor directives required
to activate frag3, a global configuration directive and an engine instantiation. There can be an arbitrary number of
engines defined at startup with their own configuration, but only one global configuration.

Global configuration

• Preprocessor name: frag3 global

• Available options:

– max frags <number> - Maximum simultaneous fragments to track, default is 8192
– memcap <bytes> - Memory cap for self preservation, default is 4MB
– prealloc frags <number> - alternate memory management mode, use preallocated fragment nodes

(faster in some situations)

Engine Configuration

• Preprocessor name: frag3 engine

• Available options:

– timeout <seconds> - Timeout for fragments, fragments in the engine for longer than this period will
be automatically dropped. Default is 60 seconds.

– ttl limit <hops> - Max TTL delta acceptable for packets based on the first packet in the fragment.
Default is 5.

– min ttl <value> - Minimum acceptable TTL value for a fragment packet. Default is 1.
– detect anomalies - Detect fragment anomalies
– bind to <ip list> - IP List to bind this engine to. This engine will only run for packets with destination

addresses contained within the IP List. Default value is all.
– policy <type> - Select a target-based defragmentation mode. Available types are first, last, bsd, bsd-

right, linux. Default type is bsd.
The Paxson Active Mapping paper introduced the terminology frag3 is using to describe policy types. The
known mappings are as follows. Anyone who develops more mappings and would like to add to this list
please feel free to send us an email!

19



Platform Type

AIX 2 BSD
AIX 4.3 8.9.3 BSD
Cisco IOS Last
FreeBSD BSD
HP JetDirect (printer) BSD-right
HP-UX B.10.20 BSD
HP-UX 11.00 First
IRIX 4.0.5F BSD
IRIX 6.2 BSD
IRIX 6.3 BSD
IRIX64 6.4 BSD
Linux 2.2.10 linux
Linux 2.2.14-5.0 linux
Linux 2.2.16-3 linux
Linux 2.2.19-6.2.10smp linux
Linux 2.4.7-10 linux
Linux 2.4.9-31SGI 1.0.2smp linux
Linux 2.4 (RedHat 7.1-7.3) linux
MacOS (version unknown) First
NCD Thin Clients BSD
OpenBSD (version unknown) linux
OpenBSD (version unknown) linux
OpenVMS 7.1 BSD
OS/2 (version unknown) BSD
OSF1 V3.0 BSD
OSF1 V3.2 BSD
OSF1 V4.0,5.0,5.1 BSD
SunOS 4.1.4 BSD
SunOS 5.5.1,5.6,5.7,5.8 First
Tru64 Unix V5.0A,V5.1 BSD
Vax/VMS BSD
Windows (95/98/NT4/W2K/XP) First

format

preprocessor frag3_global
preprocessor frag3_engine

Figure 2.4: Example configuration (Basic)

preprocessor frag3_global: prealloc_nodes 8192
preprocessor frag3_engine: policy linux, bind_to 192.168.1.0/24
preprocessor frag3_engine: policy first, bind_to [10.1.47.0/24,172.16.8.0/24]
preprocessor frag3_engine: policy last, detect_anomalies

Figure 2.5: Example configuration (Advanced)

Note in the advanced example (Figure 2.5), there are three engines specified running with linux, first and last policies
assigned. The first two engines are bound to specific IP address ranges and the last one applies to all other traffic,
packets that don’t fall within the address requirements of the first two engines automatically fall through to the third
one.
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Frag 3 Alert Output

Frag3 is capable of detecting eight different types of anomalies. Its event output is packet-based so it will work with all
output modes of Snort. Read the documentation in the doc/signatures directory with filenames that begin with “123-”
for information on the different event types.

2.1.3 Stream4

The Stream4 module provides TCP stream reassembly and stateful analysis capabilities to Snort. Robust stream
reassembly capabilities allow Snort to ignore ”stateless” attacks (which include the types of attacks that Stick and
Snot produce). Stream4 also gives large scale users the ability to track many simultaneous TCP streams. Stream4
is set to handle 8192 simultaneous TCP connections in its default configuration, however, it scales to handle over
100,000 simultaneous connections.

Stream4 contains two configurable modules, the Stream4 preprocessor and the associated Stream4 reassemble plugin.
The stream4 reassemble options are listed below.

4! NOTE
Additional options can be used if Snort is running in inline mode. See Section 1.5.2 for more information.

Stream4 Format

preprocessor stream4: [noinspect], [asynchronous_link], [keepstats [<machine|binary>]], \
[detect_scans], [log_flushed_streams], [detect_state_problems], \
[disable_evasion_alerts], [timeout <seconds>], [memcap <bytes>], \
[max_sessions <num sessions>], [cache_clean_percent <% of sessions>], \
[cache_clean_sessions <num of sessions>], [ttl_limit <count>], \
[self_preservation_threshold], [self_preservation_period], \
[suspend_threshold], [suspend_period], [enforce_state], \
[state_protection], [server_inspect_limit <bytes>]
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Option Description

asynchronous link Use state transitions based only on one-sided conversation (no tracking of ack/sequence
numbers).

cache clean percent Purge this percent of least-recently used sessions from the session cache (overrides
cache clean sessions).

cache clean sessions Purge this number of least-recently used sessions from the session cache.
detect scans Turns on alerts for portscan events.
detect state problems Turns on alerts for stream events of note, such as evasive RST packets, data on the SYN

packet, and out of window sequence numbers.
enforce state Enforces statefulness so that sessions aren’t picked up mid-stream.
favor old Favor old segments based on sequence number over a new segments.
favor new Favor new segments based on sequence number over a old segments.
flush behavior <default | large window | random> Use specified flush behavior. Random flush points defined by flush base, flush seed, and

flush range.
flush base <number> Lowest allowed random flushpoint. The default value is 512 bytes. Only used if

flush behavior is less than 0.
flush range <number> Space within random flushpoints are generated. The default value is 1213. Only used if

flush behavior is less than 0.
flush seed <number> Random seed for flushpoints. The default value is computed from Snort PID + time. Only

used if flush behavior is less than 0.
keepstats Records session summary information in <logdir>/session.log. If no options are specified,

output is human readable.
log flushed streams Log the packets that are part of reassembled stream.
disable evasion alerts Turns off alerts for events such as TCP overlap.
timeout <seconds> Amount of time to keep an inactive stream in the state table; sessions that are flushed will

automatically be picked up again if more activity is seen. The default value is 30 seconds.
memcap <bytes> Number of bytes used to store packets for reassembly.
max sessions Maximum number of simultaneous sessions.
noinspect Disables stateful inspection.
ttl limit Sets the delta value that will set off an evasion alert.
self preservation threshold Limit on number of sessions before entering self-preservation mode (only reassemble data

on the default ports).
self preservation period Length of time (seconds) to remain in self-preservation mode.
suspend threshold Limit on number of sessions before entering suspend mode (no reassembly).
suspend period Length of time (seconds) to remain in suspend mode.
server inspect limit Restrict inspection of server traffic to this many bytes until another client request is seen

(ie: client packet with data).
state protection Protect self against DoS attacks.

Stream4 reassemble Format

preprocessor stream4_reassemble: [clientonly], [serveronly], [both], [noalerts], \
[favor_old], [favor_new], [flush_on_alert], \
[overlap_limit], [ports <portlist>]
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Option Description

clientonly Provides reassembly for the client side of a connection only.
serveronly Provides reassembly for the server side of a connection only.
both Reassemble for client and server sides of connection.
noalerts Won’t alert on events that may be insertion or evasion attacks.
favor old/favor new Use newer or older packet when reassembling.
flush on alert Flush a stream when an individual packet causes an alert.
overlap limit Alert when the number of overlapping data bytes reaches a threshold.
ports <portlist> Provides reassembly for a whitespace-separated list of ports. By default, reassembly is

performed for ports 21, 23, 25, 42, 53, 80, 110, 111, 135, 136, 137, 139, 143, 445, 513,
1443, 1521, and 3306. To perform reassembly for all ports, use all as the port list.

Notes

Just setting the Stream4 and Stream4 reassemble directives without arguments in the snort.conf file will set them up
in their default configurations shown in Table 2.2 and Table 2.3.

Stream4 introduces a new command line switch: -z. On TCP traffic, if the -z switch is specified, Snort will only alert
on streams that have been established via a three way handshake or streams where cooperative bidirectional activity
has been observed (i.e., where some traffic went one way and something other than a RST or FIN was seen going back
to the originator). With -z turned on, Snort completely ignores TCP-based Stick/Snot attacks.

4! NOTE
As of Snort v2.1.1, -z has been superseded by the flow: established rule option. Please see section 3.6.9
for more information.

Table 2.2: Stream4 Defaults

Option Default
session timeout (timeout) 30 seconds
session memory cap (memcap) 8388608 bytes
stateful inspection (noinspect) active (noinspect disabled)
stream stats (keepstats) inactive
state problem alerts (detect state problems) inactive (detect state problems disabled)
evasion alerts (disable evasion alerts) inactive (disable evasion alerts enabled)
asynchronous link (asynchronous link) inactive
log flushed streams (log flushed streams) inactive
max sessions (max sessions) 8192
session cache purge (cache clean sessions) 5
session cache purge percent (cache clean percent) inactive
self preservation threshold (self preservation threshold) 50 sessions/sec
self preservation period (self preservation period) 90 seconds
suspend threshold (suspend threshold) 200 sessions/sec
suspend period (suspend period) 30 seconds
state protection (state protection) inactive
server inspect limit (server inspect limit) -1 (inactive)
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Table 2.3: Stream4 reassemble Defaults

Option Default
reassemble client (clientonly) active
reassemble server (serveronly) inactive
reassemble both (both) inactive
reassemble ports (ports) 21 23 25 42 53 80 110 111 135 136 137 139 143 445 513 1433 1521 3306
reassembly alerts (noalerts) active (noalerts disabled)
favor old packet (favor old) active
favor new packet (favor new) inactive
flush on alert (flush on alert) inactive
overlap limit (overlap limit) -1 (inactive)
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2.1.4 Flow

The Flow tracking module is meant to start unifying the state keeping mechanisms of Snort into a single place. As of
Snort 2.1.0, only a portscan detector is implemented, but in the long term, many of the stateful subsystems of Snort
will be migrated over to becoming flow plugins. With the introduction of flow, this effectively makes the conversation
preprocessor obsolete.

An IPv4 flow is unique when the IP protocol (ip proto), source IP (sip), source port (sport), destination IP (dip),
and destination port (dport) are the same. The dport and sport are 0 unless the protocol is TCP or UDP.

Format

preprocessor flow: [memcap <bytes>], [rows <count>], \
[stats_interval <seconds>], [hash <1|2>]

Table 2.4: Flow Options
Option Description

memcap Number of bytes to allocate.
rows Number of rows for the flow hash table. a

stats interval Interval (in seconds) to dump statistics to STDOUT. Set this to 0 to disable.
hash Hashing method to use.b

aThis number can be increased, at the cost of using more memory, to enhance performance. Increasing rows provide a larger hash
table.

b1 - hash by byte, 2 - hash by integer (faster, not as much of a chance to become diverse). The hash table has a pseudo-random salt
picked to make algorithmic complexity attacks much more difficult.

Example Configuration

preprocessor flow: stats_interval 0 hash 2

2.1.5 Portscan

4! NOTE
The ”Portscan” preprocessor was deprecated in Snort 2.2, in favor of Flow Portscan, which was deprecated
in Snort 2.3, in favor of sfPortscan.

2.1.6 Flow-Portscan

4! NOTE
The Flow-Portscan preprocessor was deprecated in Snort 2.3, in favor of sfPortscan.

2.1.7 sfPortscan

The sfPortscan module, developed by Sourcefire, is designed to detect the first phase in a network attack: Recon-
naissance. In the Reconnaissance phase, an attacker determines what types of network protocols or services a host
supports. This is the traditional place where a portscan takes place. This phase assumes the attacking host has no prior
knowledge of what protocols or services are supported by the target, otherwise this phase would not be necessary.
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As the attacker has no beforehand knowledge of its intended target, most queries sent by the attacker will be negative
(meaning that the service ports are closed). In the nature of legitimate network communications, negative responses
from hosts are rare, and rarer still are multiple negative responses within a given amount of time. Our primary objective
in detecting portscans is to detect and track these negative responses.

One of the most common portscanning tools in use today is Nmap. Nmap encompasses many, if not all, of the current
portscanning techniques. sfPortscan was designed to be able to detect the different types of scans Nmap can produce.

sfPortscan will currently alert for the following types of Nmap scans:

• TCP Portscan

• UDP Portscan

• IP Portscan

These alerts are for one→one portscans, which are the traditional types of scans; one host scans multiple ports on
another host. Most of the port queries will be negative, since most hosts have relatively few services available.

sfPortscan also alerts for the following types of decoy portscans:

• TCP Decoy Portscan

• UDP Decoy Portscan

• IP Decoy Portscan

Decoy portscans are much like the Nmap portscans described above, only the attacker has spoofed source address
inter-mixed with the real scanning address. This tactic helps hide the true identity of the attacker.

sfPortscan alerts for the following types of distributed portscans:

• TCP Distributed Portscan

• UDP Distributed Portscan

• IP Distributed Portscan

These are many→one portscans. Distributed portscans occur when multiple hosts query one host for open services.
This is used to evade an IDS and obfuscate command and control hosts.

4! NOTE
Negative queries will be distributed among scanning hosts, so we track this type of scan through the scanned
host.

sfPortscan alerts for the following types of portsweeps:

• TCP Portsweep

• UDP Portsweep

• IP Portsweep

• ICMP Portsweep

These alerts are for one→many portsweeps. One host scans a single port on multiple hosts. This usually occurs when
a new exploit comes out and the attacker is looking for a specific service.
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4! NOTE
The characteristics of a portsweep scan may not result in many negative responses. For example, if an attacker
portsweeps a web farm for port 80, we will most likely not see many negative responses.

sfPortscan alerts on the following filtered portscans and portsweeps:

• TCP Filtered Portscan

• UDP Filtered Portscan

• IP Filtered Portscan

• TCP Filtered Decoy Portscan

• UDP Filtered Decoy Portscan

• IP Filtered Decoy Portscan

• TCP Filtered Portsweep

• UDP Filtered Portsweep

• IP Filtered Portsweep

• ICMP Filtered Portsweep

• TCP Filtered Distributed Portscan

• UDP Filtered Distributed Portscan

• IP Filtered Distributed Portscan

“Filtered” alerts indicate that there were no network errors (ICMP unreachables or TCP RSTs) or responses on closed
ports have been suppressed. It’s also a good indicator of whether the alert is just a very active legitimate host. Active
hosts, such as NATs, can trigger these alerts because they can send out many connection attempts within a very small
amount of time. A filtered alert may go off before responses from the remote hosts are received.

sfPortscan only generates one alert for each host pair in question during the time window (more on windows below).
On TCP scan alerts, sfPortscan will also display any open ports that were scanned. On TCP sweep alerts however,
sfPortscan will only track open ports after the alert has been triggered. Open port events are not individual alerts, but
tags based off the orginal scan alert.

sfPortscan Configuration

You may want to use the following line in your snort.conf to disable evasion alerts within stream4 because some scan
packets can cause these alerts to be generated:

preprocessor stream4: disable_evasion_alerts

Use of the Flow preprocessor is required for sfPortscan. Flow gives portscan direction in the case of connectionless
protocols like ICMP and UDP. You should enable the Flow preprocessor in your snort.conf by using the following:

preprocessor flow: stats_interval 0 hash 2

The parameters you can use to configure the portscan module are:

1. proto <protocol>

Available options:
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• tcp
• udp
• icmp
• ip proto
• all

2. scan type <scan type>

Available options:

• portscan
• portsweep
• decoy portscan
• distributed portscan
• all

3. sense level <level>

Available options:

• low - “Low” alerts are only generated on error packets sent from the target host, and because of the nature
of error responses, this setting should see very few false postives. However, this setting will never trigger
a Filtered Scan alert because of a lack of error responses. This setting is based on a static time window of
60 seconds, afterwhich this window is reset.

• medium - “Medium” alerts track Connection Counts, and so will generate Filtered Scan alerts. This setting
may false positive on active hosts (NATs, proxies, DNS caches, etc), so the user may need to deploy the
use of Ignore directives to properly tune this directive.

• high - “High” alerts continuously track hosts on a network using a time window to evaluate portscan
statistics for that host. A ”High” setting will catch some slow scans because of the continuous monitoring,
but is very sensitive to active hosts. This most definitely will require the user to tune sfPortscan.

4. watch ip <ip1,ip2/cidr>

Defines what IPs or networks to watch. IPs or networks not falling into this range are ignored.

5. ignore scanners <ip list>

Ignores the source of scan alerts.

6. ignore scanned <ip list>

Ignores the destination of scan alerts

7. logfile <file>

This option will output portscan events to the file specified. If ¡file¿ does not contain a leading slash, this file
will be placed in the Snort config dir.

Format

preprocessor sfportscan: proto <protocols> \
scan_type <portscan|portsweep|decoy_portscan|distributed_portscan|all>\
sense_level <low|medium|high> watch_ip <IP or IP/CIDR> ignore_scanners <IP list>\
ignore_scanned <IP list> logfile <path and filename>
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preprocessor flow: stats_interval 0 hash 2
preprocessor sfportscan: proto { all } \

scan_type { all } \
sense_level { low }

Figure 2.6: sfPortscan Preprocessor Configuration

sfPortscan Alert Output

Unified Output

In order to get all the portscan information logged with the alert, snort generates a pseudo-packet and uses the payload
portion to store the additional portscan information of priority count, connection count, IP count, port count, IP range,
and port range. The characteristics of the packet are:

Src/Dst MAC Addr == MACDAD IP Protocol == 255 IP TTL == 0

Other than that, the packet looks like the IP portion of the packet that caused the portscan alert to be generated. This
includes any IP options, etc. The payload and payload size of the packet is equal to the length of the additional portscan
information that is logged. The size tends to be around 100 - 200 bytes.

Open port alerts differ from the other portscan alerts, because open port alerts utilize the tagged packet output system.
This means that if an output system that doesn’t print tagged packets is used, then the user won’t see open port alerts.
The open port information is stored in the IP payload and contains the port that is open.

The sfPortscan alert output was designed to work with unified packet logging, so it is possible to extend favorite snort
GUIs to display portscan alerts and the additional information in the IP payload using the above packet characteristics.

Log File Output

Logfile output is displayed in the following format, and explained further below:

Time: 09/08-15:07:31.603880
event_id: 2
192.168.169.3 -> 192.168.169.5 (portscan) TCP Filtered Portscan
Priority Count: 0
Connection Count: 200
IP Count: 2
Scanner IP Range: 192.168.169.3:192.168.169.4
Port/Proto Count: 200
Port/Proto Range: 20:47557

If there are open ports on the target, an additional tagged packet(s) will be appended:

Time: 09/08-15:07:31.603881
event_ref: 2
192.168.169.3 -> 192.168.169.5 (portscan) Open Port
Open Port: 38458

1. Event id/Event ref

These fields are used to link an alert with the corresponding Open Port tagged packet

2. Priority Count

Priority Count keeps track of bad responses (resets, unreachables). The higher the Priority Count, the more bad
responses have been received.

3. Connection Count

Connection Count lists how many connections are active on the hosts (src or dst). This is accurate for connection-
based protocols, and is more of an estimate for others. Whether or not a portscan was filtered is determined here.
High connection count and low priority count would indicate filtered (no response received from target).
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4. IP Count

IP Count keeps track of the last IP to contact a host, and increments the count if the next IP is different. For
one-to-one scans, this is a low number. For active hosts this number will be high regardless, and one-to-one
scans may appear as a distributed scan.

5. Scanned/Scanner IP Range

This field changes depending on the type of alert. Portsweeps (one-to-many) scans display the scanned IP range;
Portscans (one-to-one) display the scanner IP.

6. Port Count

Port Count keeps track of the last port contacted and increments this number when that changes. We use this
count (along with IP Count) to determine the difference between one-to-one portscans and one-to-one decoys.

Tuning sfPortscan

The most important aspect in detecting portscans is tuning the detection engine for your network(s). Here are some
tuning tips:

1. Use the watch ip, ignore scanners, and ignore scanned options.

It’s important to correctly set these options. The watch ip option is easy to understand. The analyst should set
this option to the list of Cidr blocks and IPs that they want to watch. If no watch ip is defined, sfPortscan will
watch all network traffic.
The ignore scanners and ignore scanned options come into play in weeding out legitimate hosts that are very
active on your network. Some of the most common examples are NAT IPs, DNS cache servers, syslog servers,
and nfs servers. sfPortscan may not generate false positives for these types of hosts, but be aware when first
tuning sfPortscan for these IPs. Depending on the type of alert that the host generates, the analyst will know
which to ignore it as. If the host is generating portsweep events, then add it to the ignore scanners option. If the
host is generating portscan alerts (and is the host that is being scanned), add it to the ignore scanned option.

2. Filtered scan alerts are much more prone to false positives.

When determining false positives, the alert type is very important. Most of the false positives that sfPortscan
may generate are of the filtered scan alert type. So be much more suspicious of filtered portscans. Many times
this just indicates that a host was very active during the time period in question. If the host continually generates
these types of alerts, add it to the ignore scanners list or use a lower sensitivity level.

3. Make use of the Priority Count, Connection Count, IP Count, Port Count, IP range, and Port range to
determine false positives.

The portscan alert details are vital in determining the scope of a portscan and also the confidence of the portscan.
In the future, we hope to automate much of this analysis in assigning a scope level and confidence level, but
for now the user must manually do this. The easiest way to determine false positives is through simple ratio
estimations. The following is a list of ratios to estimate and the associated values that indicate a legimite scan
and not a false positive.
Connection Count / IP Count: This ratio indicates an estimated average of connections per IP. For portscans,
this ratio should be high, the higher the better. For portsweeps, this ratio should be low.
Port Count / IP Count: This ratio indicates an estimated average of ports connected to per IP. For portscans, this
ratio should be high and indicates that the scanned host’s ports were connected to by fewer IPs. For portsweeps,
this ratio should be low, indicating that the scanning host connected to few ports but on many hosts.
Connection Count / Port Count: This ratio indicates an estimated average of connections per port. For
portscans, this ratio should be low. This indicates that each connection was to a different port. For portsweeps,
this ratio should be high. This indicates that there were many connections to the same port.
The reason that Priority Count is not included, is because the priority count is included in the connection count
and the above comparisons take that into consideration. The Priority Count play an important role in tuning
because the higher the priority count the more likely it is a real portscan or portsweep (unless the host is fire-
walled).
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4. If all else fails, lower the sensitivity level.

If none of these other tuning techniques work or the analyst doesn’t have the time for tuning, lower the sensitivity
level. You get the best protection the higher the sensitivity level, but it’s also important that the portscan detection
engine generates alerts that the analyst will find informative. The low sensitivity level only generates alerts based
on error responses. These responses indicate a portscan and the alerts generated by the low sensitivity level are
highly accurate and require the least tuning. The low sensitivity level does not catch filtered scans, since these
are more prone to false positives.

2.1.8 Telnet Decode

The telnet decode preprocessor allows Snort to normalize Telnet control protocol characters from the session data. In
Snort 1.9.0 and above, it accepts a list of ports to run on as arguments. Also in 1.9.0, it normalizes into a separate data
buffer from the packet itself so that the raw data may be logged or examined with the rawbytes content modifier3.5.3.

By default, telnet decode runs against traffic on ports 21, 23, 25, and 119.

Format

preprocessor telnet_decode: <ports>

2.1.9 RPC Decode

The rpc decode preprocessor normalizes RPC multiple fragmented records into a single un-fragmented record. It does
this by normalizing the packet into the packet buffer. If stream4 is enabled, it will only process client-side traffic. By
default, it runs against traffic on ports 111 and 32771.

Table 2.5: RPC Decoder Options

Option Description

alert fragments Alert on any fragmented RPC record.
no alert multiple requests Don’t alert when there are multiple records in one packet.
no alert large fragments Don’t alert when the sum of fragmented records exceeds one packet.
no alert incomplete Don’t alert when a single fragment record exceeds the size of one packet.

Format

preprocessor rpc_decode: <ports> [ alert_fragments ] \
[no_alert_multiple_requests] [no_alert_large_fragments] \
[no_alert_incomplete]

2.1.10 Performance Monitor

This preprocessor measures Snort’s real-time and theoretical maximum performance. Whenever this preprocessor is
turned on, it should have an output mode enabled, either “console” which prints statistics to the console window or
“file” with a file name, where statistics get printed to the specified file name. By default, Snort’s real-time statistics
are processed. This includes:

• Mbits/Sec

• Drop Rate

• Alerts/Sec
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• K-Pkts/Sec

• Avg Bytes/Pkt

• Pat-Matched [percent of data received that Snort processes in pattern matching]

• Syns/Sec

• SynAcks/Sec

• New Sessions Cached/Sec

• Sessions Del fr Cache/Sec

• Current Cached Sessions

• Max Cached Sessions

• Stream Flushes/Sec

• Stream Session Cache Faults

• Stream Session Cache Timeouts

• Frag-Completes/Sec

• Frag-Inserts/Sec

• Frag-Deletes/Sec

• Frag-Flushes/Sec

• Frag-Timeouts

• Frag-Faults

• CPU usage (user)

• CPU usage (sys)

• CPU usage (Idle)

• Mbits/Sec (wire) [average mbits of total traffic]

• Mbits/Sec (ipfrag) [average mbits of IP fragmented traffic]

• Mbits/Sec (ipreass) [average mbits Snort injects after IP reassembly]

• Mbits/Sec (tcprebuilt) [average mbits Snort injects after stream4 reassembly]

• Mbits/Sec (applayer) [average mbits seen by rules and protocol decoders]

• Avg Bytes/Pkt (wire)

• Avg Bytes/Pkt (ipfrag)

• Avg Bytes/Pkt (ipreass)

• Avg Bytes/Pkt (tcprebuilt)

• Avg Bytes/Pkt (applayer)

• K-Pkts/Sec (wire)

• K-Pkts/Sec (ipfrag)

• K-Pkts/Sec (ipreass)

• K-Pkts/Sec (tcprebuilt)
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• K-Pkts/Sec (applayer)

The following options can be used with the Performance Monitor:

• flow - Prints out statistics about the type of traffic and protocol distributions that Snort is seeing. This option
can produce large amounts of output.

• events - Turns on event reporting. This prints out statistics as to the number of signatures that were matched by
the setwise pattern matcher (non-qualified events) and the number of those matches that were verified with the
signature flags (qualified events). This shows the user if there is a problem with the ruleset that they are running.

• max - Turns on the theoretical maximum performance that Snort calculates given the processor speed and current
performance. This is only valid for uniprocessor machines, since many operating systems don’t keep accurate
kernel statistics for multiple CPUs.

• console - Prints statistics at the console, this is enabled by default.

• file - Prints statistics in a comma-delimited format to the file that is specified. Not all statistics are output to
this file. You may also use snortfile which will output into your defined Snort log directory. Both of these
directives can be overridden on the command line with the -Z option.

• pktcnt - Adjusts the number of packets to process before checking for the time sample. This boosts perfor-
mance, since checking the time sample reduces Snort’s performance. By default, this is 10000.

• time - Represents the number of seconds between intervals.

• accumulate or reset - Defines what type of drop statistics are kept by the operating system. By default,
accumulate is used.

• atexitonly - Dump stats for entire life of snort.

Examples

preprocessor perfmonitor: time 30 events flow file stats.profile max \
console pktcnt 10000

preprocessor perfmonitor: time 300 file /var/tmp/snortstat pktcnt 10000

2.1.11 HTTP Inspect

HTTPInspect is a generic HTTP decoder for user applications. Given a data buffer, HTTPInspect will decode the
buffer, find HTTP fields, and normalize the fields. HTTPInspect works on both client requests and server responses.

The current version of HTTPInspect only handles stateless processing. This means that HTTPInspect looks for HTTP
fields on a packet-by-packet basis, and will be fooled if packets are not reassembled. This works fine when there is
another module handling the reassembly, but there are limitations in analyzing the protocol. Future versions will have
a stateful processing mode which will hook into various reassembly modules.

HTTPInspect has a very “rich” user configuration. Users can configure individual HTTP servers with a variety of
options, which should allow the user to emulate any type of web server. Within HTTPInspect, there are two areas of
configuration: global and server.

Global Configuration

The global configuration deals with configuration options that determine the global functioning of HTTPInspect. The
following example gives the generic global configuration format:
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Format

preprocessor http_inspect: global \
iis_unicode_map <map_filename> \
codemap <integer> \
[detect_anomalous_servers] \
[proxy_alert]

You can only have a single global configuration, you’ll get an error if you try otherwise.

Configuration

1. iis unicode map <map filename> [codemap <integer>]

This is the global iis unicode map file. The iis unicode map is a required configuration parameter. The map file
can reside in the same directory as snort.conf or specified via a fully-qualified path to the map file.
The iis unicode map file is a Unicode codepoint map which tells HTTPInspect which codepage to use when
decoding Unicode characters. For US servers, the codemap is usually 1252.
A Microsoft US Unicode codepoint map is provided in the snort source etc directory by default. It is called
unicode.map and should be used if no other codepoint map is available. A tool is supplied with Snort to generate
custom Unicode maps–ms unicode generator.c, which is available at http://www.snort.org/dl/contrib/.

4! NOTE
Remember that this configuration is for the global IIS Unicode map—individual servers can reference their
own IIS Unicode map.

2. detect anomalous servers

This global configuration option enables generic HTTP server traffic inspection on non-HTTP configured ports,
and alerts if HTTP traffic is seen. Don’t turn this on if you don’t have a default server configuration that
encompasses all of the HTTP server ports that your users might access. In the future, we want to limit this to
specific networks so it’s more useful, but for right now, this inspects all network traffic.

3. proxy alert

This enables global alerting on HTTP server proxy usage. By configuring HTTPInspect servers and enabling
allow proxy use, you will only receive proxy use alerts for web users that aren’t using the configured proxies
or are using a rogue proxy server.
Please note that if users aren’t required to configure web proxy use, then you may get a lot of proxy alerts. So,
please only use this feature with traditional proxy environments. Blind firewall proxies don’t count.

Example Global Configuration

preprocessor http_inspect: global iis_unicode_map unicode.map 1252

Server Configuration

There are two types of server configurations: default and by IP address.

Default This configuration supplies the default server configuration for any server that is not individually configured.
Most of your web servers will most likely end up using the default configuration.
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Example Default Configuration

preprocessor http_inspect_server: server default profile all ports { 80 }

Configuration by IP Address This format is very similar to “default,” the only difference being that specific IPs
can be configured.

Example IP Configuration

preprocessor http_inspect_server: server 10.1.1.1 profile all ports { 80 }

Server Configuration Options

Important: Some configuration options have an argument of ‘yes’ or ‘no’. This argument specifies whether the user
wants the configuration option to generate an httpinspect alert or not. the ‘yes/no’ argument does not specify whether
the configuration option itself is on or off, only the alerting functionality. in other words, whether set to ‘yes’ or ’no’,
HTTP normalization will still occur, and rules based off HTTP traffic will still trigger.

1. profile <all|apache|iis>

Users can configure HTTPInspect by using pre-defined HTTP server profiles. Profiles allow the user to easily
configure the preprocessor for a certain type of server, but are not required for proper operation.
There are three profiles available: all, apache, and iis.

1-A. all

The “all” profile is meant to normalize the URI using most of the common tricks available. We alert on
the more serious forms of evasions. This is a great profile for detecting all types of attacks, regardless of
the HTTP server. “profile all” sets the configuration options described in Table 2.6.

Table 2.6: Options for the “all” Profile

Option Setting

flow depth 300
chunk encoding alert on chunks larger than 500000 bytes
iis unicode map codepoint map in the global configuration
ascii decoding on, alert off
multiple slash on, alert off
directory normalization on, alert off
apache whitespace on, alert off
double decoding on, alert on
%u decoding on, alert on
bare byte decoding on, alert on
iis unicode codepoints on, alert on
iis backslash on, alert off
iis delimiter on, alert off
webroot on, alert on
non strict URL parsing on
tab uri delimiter is set

1-B. apache

The “apache” profile is used for Apache web servers. This differs from the “iis” profile by only accepting
UTF-8 standard Unicode encoding and not accepting backslashes as legitimate slashes, like IIS does.
Apache also accepts tabs as whitespace. “profile apache” sets the configuration options described in
Table 2.7.
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Table 2.7: Options for the “apache” Profile

Option Setting
flow depth 300
chunk encoding alert on chunks larger than 500000 bytes
ascii decoding on, alert off
multiple slash on, alert off
directory normalization on, alert off
webroot on, alert on
apache whitespace on, alert on
utf 8 encoding on, alert off
non strict url parsing on
tab uri delimiter is set

1-C. iis

The “iis” profile mimics IIS servers. So that means we use IIS Unicode codemaps for each server, %u
encoding, bare-byte encoding, double decoding, backslashes, etc. “profile iis” sets the configuration
options described in Table 2.8.

Table 2.8: Options for the “iis” Profile

Option Setting
flow depth 300
chunk encoding alert on chunks larger than 500000 bytes
iis unicode map codepoint map in the global configuration
ascii decoding on, alert off
multiple slash on, alert off
directory normalization on, alert off
webroot on, alert on
double decoding on, alert on
%u decoding on, alert on
bare byte decoding on, alert on
iis unicode codepoints on, alert on
iis backslash on, alert off
iis delimiter on, alert on
apache whitespace on, alert on
non strict URL parsing on

The default options used by HTTP Inspect do not use a profile and are described in Table 2.9.
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Table 2.9: Default HTTP Inspect Options

Option Setting
port 80
flow depth 300
chunk encoding alert on chunks larger than 500000 bytes
ascii decoding on, alert off
utf 8 encoding on, alert off
multiple slash on, alert off
directory normalization on, alert off
webroot on, alert on
iis backslash on, alert off
apache whitespace on, alert off
iis delimiter on, alert off
non strict URL parsing on
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Profiles must be specified as the first server option and cannot be combined with any other options except:
• ports

• iis unicode map

• allow proxy use

• flow depth

• no alerts

• inspect uri only

• oversize dir length

These options must be specified after the ‘profile’ option.

Example

preprocessor http_inspect_server: server 1.1.1.1 profile all ports { 80 3128 }

2. ports {<port> [<port>< ... >]}

This is how the user configures which ports to decode on the HTTP server. Encrypted traffic (SSL) cannot be
decoded, so adding port 443 will only yield encoding false positives.

3. iis unicode map <map filename> codemap <integer>

The IIS Unicode map is generated by the program ms unicode generator.c. This program is located on the
Snort.org web site at http://www.snort.org/dl/contrib/ directory. Executing this program generates a
Unicode map for the system that it was run on. So, to get the specific Unicode mappings for an IIS web server,
you run this program on that server and use that Unicode map in this configuration.
When using this option, the user needs to specify the file that contains the IIS Unicode map and also specify
the Unicode map to use. For US servers, this is usually 1252. But the ms unicode generator program tells you
which codemap to use for you server, it’s the ANSI code page. You can select the correct code page by looking
at the available code pages that the ms unicode generator outputs.

4. flow depth <integer>

This specifies the amount of server response payload to inspect. This option significantly increases IDS perfor-
mance because we are ignoring a large part of the network traffic (HTTP server response payloads). A small
percentage of Snort rules are targeted at this traffic and a small flow depth value may cause false negatives in
some of these rules. Most of these rules target either the HTTP header, or the content that is likely to be in the
first hundred or so bytes of non-header data. Headers are usually under 300 bytes long, but your mileage may
vary.
This value can be set from -1 to 1460. A value of -1 causes Snort to ignore all server side traffic for ports defined
in ports. Inversely, a value of 0 causes Snort to inspect all HTTP server payloads defined in ports (note that
this will likely slow down IDS performance). Values above 0 tell Snort the number of bytes to inspect in the
first packet of the server response.

5. ascii <yes|no>

The ascii decode option tells us whether to decode encoded ASCII chars, a.k.a %2f = /, %2e = ., etc. It is
normal to see ASCII encoding usage in URLs, so it is recommended that you disable HTTPInspect alerting for
this option.

6. utf 8 <yes|no>

The utf-8 decode option tells HTTPInspect to decode standard UTF-8 Unicode sequences that are in the URI.
This abides by the Unicode standard and only uses % encoding. Apache uses this standard, so for any Apache
servers, make sure you have this option turned on. As for alerting, you may be interested in knowing when you
have a UTF-8 encoded URI, but this will be prone to false positives as legitimate web clients use this type of
encoding. When utf 8 is enabled, ASCII decoding is also enabled to enforce correct functioning.
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7. u encode <yes|no>

This option emulates the IIS %u encoding scheme. How the %u encoding scheme works is as follows: the
encoding scheme is started by a %u followed by 4 characters, like %uxxxx. The xxxx is a hex-encoded value
that correlates to an IIS Unicode codepoint. This value can most definitely be ASCII. An ASCII character is
encoded like %u002f = /, %u002e = ., etc. If no iis unicode map is specified before or after this option, the
default codemap is used.
You should alert on %u encodings, because we are not aware of any legitimate clients that use this encoding. So
it is most likely someone trying to be covert.

8. bare byte <yes|no>

Bare byte encoding is an IIS trick that uses non-ASCII characters as valid values when decoding UTF-8 values.
This is not in the HTTP standard, as all non-ASCII values have to be encoded with a %. Bare byte encoding
allows the user to emulate an IIS server and interpret non-standard encodings correctly.
The alert on this decoding should be enabled, because there are no legitimate clients that encode UTF-8 this
way since it is non-standard.

9. base36 <yes|no>

This is an option to decode base36 encoded chars. This option is based off of info from http://www.yk.rim.
or.jp/˜shikap/patch/spp\_http\_decode.patch.
If %u encoding is enabled, this option will not work. You have to use the base36 option with the utf 8 option.
Don’t use the %u option, because base36 won’t work. When base36 is enabled, ASCII encoding is also enabled
to enforce correct behavior.

10. iis unicode <yes|no>

The iis unicode option turns on the Unicode codepoint mapping. If there is no iis unicode map option spec-
ified with the server config, iis unicode uses the default codemap. The iis unicode option handles the
mapping of non-ASCII codepoints that the IIS server accepts and decodes normal UTF-8 request.
You should alert on the iis unicode option, because it is seen mainly in attacks and evasion attempts. When
iis unicode is enabled, ASCII and UTF-8 decoding are also enabled to enforce correct decoding. To alert on
UTF-8 decoding, you must enable also enable utf 8 yes.

11. double decode <yes|no> The double decode option is once again IIS-specific and emulates IIS function-
ality. How this works is that IIS does two passes through the request URI, doing decodes in each one. In the
first pass, it seems that all types of iis encoding is done: utf-8 unicode, ascii, bare byte, and %u. In the second
pass, the following encodings are done: ascii, bare byte, and %u. We leave out utf-8 because I think how this
works is that the % encoded utf-8 is decoded to the Unicode byte in the first pass, and then UTF-8 is decoded in
the second stage. Anyway, this is really complex and adds tons of different encodings for one character. When
double decode is enabled, so ASCII is also enabled to enforce correct decoding.

12. non rfc char {<byte> [<byte ...>]}

This option lets users receive an alert if certain non-RFC chars are used in a request URI. For instance, a user
may not want to see null bytes in the request URI and we can alert on that. Please use this option with care,
because you could configure it to say, alert on all ‘/’ or something like that. It’s flexible, so be careful.

13. multi slash <yes|no>

This option normalizes multiple slashes in a row, so something like: “foo/////////bar” get normalized to “foo/bar.”
If you want an alert when multiple slashes are seen, then configure with a yes, otherwise, use no.

14. iis backslash <yes|no>

Normalizes backslashes to slashes. This is again an IIS emulation. So a request URI of “/foo\bar” gets normal-
ized to “/foo/bar.”

15. directory <yes|no>

This option normalizes directory traversals and self-referential directories.
The directory:
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/foo/fake\_dir/../bar

gets normalized to:

/foo/bar

The directory:

/foo/./bar

gets normalized to:

/foo/bar

If you want to configure an alert, specify “yes”, otherwise, specify “no.” This alert may give false positives,
since some web sites refer to files using directory traversals.

16. apache whitespace <yes|no>

This option deals with the non-RFC standard of using tab for a space delimiter. Apache uses this, so if the
emulated web server is Apache, enable this option. Alerts on this option may be interesting, but may also be
false positive prone.

17. iis delimiter <yes|no>

This started out being IIS-specific, but Apache takes this non-standard delimiter was well. Since this is common,
we always take this as standard since the most popular web servers accept it. But you can still get an alert on
this option.

18. chunk length <non-zero positive integer>

This option is an anomaly detector for abnormally large chunk sizes. This picks up the Apache chunk encoding
exploits, and may also alert on HTTP tunneling that uses chunk encoding.

19. no pipeline req

This option turns HTTP pipeline decoding off, and is a performance enhancement if needed. By default, pipeline
requests are inspected for attacks, but when this option is enabled, pipeline requests are not decoded and ana-
lyzed per HTTP protocol field. It is only inspected with the generic pattern matching.

20. non strict

This option turns on non-strict URI parsing for the broken way in which Apache servers will decode a URI.
Only use this option on servers that will accept URIs like this: ”get /index.html alsjdfk alsj lj aj la jsj s\n”. The
non strict option assumes the URI is between the first and second space even if there is no valid HTTP identifier
after the second space.

21. allow proxy use

By specifying this keyword, the user is allowing proxy use on this server. This means that no alert will be
generated if the proxy alert global keyword has been used. If the proxy alert keyword is not enabled, then this
option does nothing. The allow proxy use keyword is just a way to suppress unauthorized proxy use for an
authorized server.

22. no alerts

This option turns off all alerts that are generated by the HTTPInspect preprocessor module. This has no effect
on HTTP rules in the ruleset. No argument is specified.

23. oversize dir length <non-zero positive integer>

This option takes a non-zero positive integer as an argument. The argument specifies the max char directory
length for URL directory. If a url directory is larger than this argument size, an alert is generated. A good
argument value is 300 characters. This should limit the alerts to IDS evasion type attacks, like whisker -i 4.
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24. inspect uri only

This is a performance optimization. When enabled, only the URI portion of HTTP requests will be inspected
for attacks. As this field usually contains 90-95% of the web attacks, you’ll catch most of the attacks. So if
you need extra performance, enable this optimization. It’s important to note that if this option is used without
any uricontent rules, then no inspection will take place. This is obvious since the URI is only inspected with
uricontent rules, and if there are none available, then there is nothing to inspect.
For example, if we have the following rule set:

alert tcp any any -> any 80 ( msg:"content"; content: "foo"; )

and the we inspect the following URI:

get /foo.htm http/1.0\r\n\r\n

No alert will be generated when ‘inspect uri only’ is enabled. The ‘inspect uri only’ configuration turns off all
forms of detection except uricontent inspection.

25. webroot
This option generates an alert when a directory traversal traverses past the web server root directory. This
generates much fewer false positives than the directory option, because it doesn’t alert on directory traversals
that stay within the web server directory structure. It only alerts when the directory traversals go past the web
server root directory, which is associated with certain web attacks.

26. tab uri delimiter
This option turns on the use of the tab character (0x09) as a delimiter for a URI. Apache accepts tab as a
delimiter, IIS does not. For IIS, a tab in the URI should be treated as any other character. Whether this option is
on or not, a tab is treated as whitespace if a space character (0x20) precedes it. No argument is specified.

Examples

preprocessor http_inspect_server: server 10.1.1.1 \
ports { 80 3128 8080 } \
flow_depth 0 \
ascii no \
double_decode yes \
non_rfc_char { 0x00 } \
chunk_length 500000 \
non_strict \
no_alerts

preprocessor http_inspect_server: server default \
ports { 80 3128 } \
non_strict \
non_rfc_char { 0x00 } \
flow_depth 300 \
apache_whitespace yes \
directory no \
iis_backslash no \
u_encode yes \
ascii no \
chunk_length 500000 \
bare_byte yes \
double_decode yes \
iis_unicode yes \
iis_delimiter yes \
multi_slash no
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preprocessor http_inspect_server: server default \
profile all \
ports { 80 8080 }

2.1.12 ASN.1 Detection

The asn.1 detection plugin decodes a packet or a portion of a packet, and looks for various malicious encodings.

The general configuration of the asn.1 rule option is as follows:

asn1: [keyword [argument]], . . .

Multiple keywords can be used in an ’asn1’ option and the implied logic is boolean OR. So if any of the arguments
evaluate as true, the whole option evaluates as true.

ASN.1 Keywords

The ASN.1 keywords provide programmatic detection capabilities as well as some more dynamic type detection. Most
of the keywords don’t have arguments as the detection is looking for non-configurable information. If a keyword does
have an argument, the keyword is followed by a comma and the argument is the next word. If a keyword has multiple
arguments, then a comman separates each.

1. bitstring overflow

The bitstring overflow option detects invalid bitstring encodings that are known to be remotely exploitable.

2. double overflow

The double overflow detects a double ASCII encoding that is larger than a standard buffer. This is known to be
an exploitable function in Microsoft, but it is unknown at this time which services may be exploitable.

3. oversize length

This detection keyword compares ASN.1 type lengths with the supplied argument. The syntax looks like,
“oversize length 500”. This means that if an ASN.1 type is greater than 500, then this keyword is evaluated as
true. This keyword must have one argument which specifies the length to compare against.

4. absolute offset

This is the absolute offset from the beginning of the packet. For example, if you wanted to decode snmp
packets, you would say “absolute offset, 0”. absolute offset has one argument—the offset value. Offset
may be positive or negative.

5. relative offset

This is the relative offset from the last content match or byte test/jump. relative offset has one argument—
the offset number. So if you wanted to start decoding and ASN.1 sequence right after the content “foo”,
you would specify ’content:"foo"; asn1: bitstring_overflow, relative_offset, 0’. Offset values
may be positive or negative.

ASN.1 Examples

The following rules use ASN.1 decoding options:

alert udp any any -> any 161 (msg:"Oversize SNMP Length"; \
asn1: oversize_length, 10000, absolute_offset, 0;)

alert tcp any any -> any 80 (msg:"ASN1 Relative Foo"; content:"foo"; \
asn1: bitstring_overflow, print, relative_offset, 0;)
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2.1.13 X-Link2State Mini-Preprocessor

This mini-preprocessor is designed to detect the X-Link2State (www.microsoft.com/technet/security/bulletin/
MS05-021.mspx) vulnerability in Microsoft Exchange Server.

4! NOTE
The X-Link2State functionality will be rolled up into an SMTP preprocessor in the Snort v2.5 timeframe.

Format

preprocessor xlink2state: ports { <port> [<port> <...>] } [drop]

Example Configuration

preprocessor xlink2state: ports { 25 691 }

Table 2.10: X-Link2State Options

Option Description

ports List of space-separated ports to inspect
drop Drop this connection (Inline-mode only)

2.2 Event Thresholding

You can use event thresholding to reduce the number of logged alerts for noisy rules. This can be tuned to significantly
reduce false alarms, and it can also be used to write a newer breed of rules. Thresholding commands limit the number
of times a particular event is logged during a specified time interval. See Section 3.8 for more information.

2.3 Output Modules

Output modules are new as of version 1.6. They allow Snort to be much more flexible in the formatting and presentation
of output to its users. The output modules are run when the alert or logging subsystems of Snort are called, after
the preprocessors and detection engine. The format of the directives in the rules file is very similar to that of the
preprocessors.

Multiple output plugins may be specified in the Snort configuration file. When multiple plugins of the same type (log,
alert) are specified, they are stacked and called in sequence when an event occurs. As with the standard logging and
alerting systems, output plugins send their data to /var/log/snort by default or to a user directed directory (using the -l
command line switch).

Output modules are loaded at runtime by specifying the output keyword in the rules file:

output <name>: <options>

output alert_syslog: log_auth log_alert

Figure 2.7: Output Module Configuration Example
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2.3.1 alert syslog

This module sends alerts to the syslog facility (much like the -s command line switch). This module also allows the
user to specify the logging facility and priority within the Snort rules file, giving users greater flexibility in logging
alerts.

Available Keywords

Facilities

• log auth

• log authpriv

• log daemon

• log local0

• log local1

• log local2

• log local3

• log local4

• log local5

• log local6

• log local7

• log user

Priorities

• log emerg

• log alert

• log crit

• log err

• log warning

• log notice

• log info

• log debug

Options

• log cons

• log ndelay

• log perror

• log pid
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Format

alert_syslog: <facility> <priority> <options>

4! NOTE
As WIN32 does not run syslog servers locally by default, a hostname and port can be passed as options. The
default host is 127.0.0.1. The default port is 514.

output alert_syslog: [host=<hostname[:<port>],] <facility> <priority> <options>

output alert_syslog: 10.1.1.1:514, <facility> <priority> <options>

Figure 2.8: Syslog Configuration Example

2.3.2 alert fast

This will print Snort alerts in a quick one-line format to a specified output file. It is a faster alerting method than full
alerts because it doesn’t need to print all of the packet headers to the output file

Format

alert_fast: <output filename>

output alert_fast: alert.fast

Figure 2.9: Fast Alert Configuration

2.3.3 alert full

This will print Snort alert messages with full packet headers. The alerts will be written in the default logging directory
(/var/log/snort) or in the logging directory specified at the command line.

Inside the logging directory, a directory will be created per IP. These files will be decoded packet dumps of the packets
that triggered the alerts. The creation of these files slows Snort down considerably. This output method is discouraged
for all but the lightest traffic situations.

Format

alert_full: <output filename>

output alert_full: alert.full

Figure 2.10: Full Alert Configuration
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2.3.4 alert unixsock

Sets up a UNIX domain socket and sends alert reports to it. External programs/processes can listen in on this socket
and receive Snort alert and packet data in real time. This is currently an experimental interface.

Format

alert_unixsock

output alert_unixsock

Figure 2.11: UNIXSock Alert Configuration

2.3.5 log tcpdump

The log tcpdump module logs packets to a tcpdump-formatted file. This is useful for performing post-process analysis
on collected traffic with the vast number of tools that are available for examining tcpdump-formatted files. This module
only takes a single argument: the name of the output file. Note that the file name will have the UNIX timestamp in
seconds appended the file name. This is so that data from separate Snort runs can be kept distinct.

Format

log_tcpdump: <output filename>

output log_tcpdump: snort.log

Figure 2.12: Tcpdump Output Module Configuration Example

2.3.6 database

This module from Jed Pickel sends Snort data to a variety of SQL databases. More information on installing and
configuring this module can be found on the [91]incident.org web page. The arguments to this plugin are the name of
the database to be logged to and a parameter list. Parameters are specified with the format parameter = argument. see
Figure 2.13 for example usage.

Format

database: <log | alert>, <database type>, <parameter list>

The following parameters are available:

host - Host to connect to. If a non-zero-length string is specified, TCP/IP communication is used. Without a host
name, it will connect using a local UNIX domain socket.

port - Port number to connect to at the server host, or socket filename extension for UNIX-domain connections.

dbname - Database name

user - Database username for authentication

password - Password used if the database demands password authentication
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sensor name - Specify your own name for this Snort sensor. If you do not specify a name, one will be generated
automatically

encoding - Because the packet payload and option data is binary, there is no one simple and portable way to store it
in a database. Blobs are not used because they are not portable across databases. So i leave the encoding option
to you. You can choose from the following options. Each has its own advantages and disadvantages:

hex (default) - Represent binary data as a hex string.
Storage requirements - 2x the size of the binary
Searchability - very good
Human readability - not readable unless you are a true geek, requires post processing

base64 - Represent binary data as a base64 string.
Storage requirements - ∼1.3x the size of the binary
Searchability - impossible without post processing
Human readability - not readable requires post processing

ascii - Represent binary data as an ASCII string. This is the only option where you will actually lose data.
Non-ASCII Data is represented as a ‘.’. If you choose this option, then data for IP and TCP options will
still be represented as hex because it does not make any sense for that data to be ASCII.
Storage requirements - slightly larger than the binary because some characters are escaped (&,<,>)
Searchability - very good for searching for a text string impossible if you want to search for binary
human readability - very good

detail - How much detailed data do you want to store? The options are:

full (default) - Log all details of a packet that caused an alert (including IP/TCP options and the payload)
fast - Log only a minimum amount of data. You severely limit the potential of some analysis applications

if you choose this option, but this is still the best choice for some applications. The following fields are
logged: timestamp, signature, source ip, destination ip, source port, destination port, tcp
flags, and protocol)

Furthermore, there is a logging method and database type that must be defined. There are two logging types available,
log and alert. Setting the type to log attaches the database logging functionality to the log facility within the program.
If you set the type to log, the plugin will be called on the log output chain. Setting the type to alert attaches the plugin
to the alert output chain within the program.

There are five database types available in the current version of the plugin. These are mssql, mysql, postgresql,
oracle, and odbc. Set the type to match the database you are using.

4! NOTE
The database output plugin does not have the ability to handle alerts that are generated by using the tag
keyword. See section 3.7.5 for more details.

output database: log, mysql, dbname=snort user=snort host=localhost password=xyz

Figure 2.13: Database Output Plugin Configuration

2.3.7 csv

The csv output plugin allows alert data to be written in a format easily importable to a database. The plugin requires
2 arguments: a full pathname to a file and the output formatting option.

The list of formatting options is below. If the formatting option is default, the output is in the order the formatting
option is listed.
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• timestamp

• sig generator

• sig id

• sig rev

• msg

• proto

• src

• srcport

• dst

• dstport

• ethsrc

• ethdst

• ethlen

• tcpflags

• tcpseq

• tcpack

• tcplen

• tcpwindow

• ttl

• tos

• id

• dgmlen

• iplen

• icmptype

• icmpcode

• icmpid

• icmpseq

Format

output alert_csv: <filename> <format>
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output alert_csv: /var/log/alert.csv default

output alert_csv: /var/log/alert.csv timestamp, msg

Figure 2.14: CSV Output Configuration

2.3.8 unified

The unified output plugin is designed to be the fastest possible method of logging Snort events. The unified output
plugin logs events in binary format, allowing another programs to handle complex logging mechanisms that would
otherwise diminish the performance of Snort.

The name unified is a misnomer, as the unified output plugin creates two different files, an alert file, and a log file.
The alert file contains the high-level details of an event (eg: IPs, protocol, port, message id). The log file contains
the detailed packet information (a packet dump with the associated event ID). Both file types are written in a bimary
format described in spo unified.h.

4! NOTE
Files have the file creation time (in Unix Epoch format) appended to each file when it is created.

Format

output alert_unified: <base file name> [, <limit <file size limit in MB>]
output log_unified: <base file name> [, <limit <file size limit in MB>]

output alert_unified: snort.alert, limit 128
output log_unified: snort.log, limit 128

Figure 2.15: Unified Configuration Example

2.3.9 alert prelude

4! NOTE
support to use alert prelude is not built in by default. To use alert prelude, snort must be built with the
–enable-prelude arguement passed to ./configure.

The alert prelude output plugin is used to log to a Prelude database. For more information on Prelude, see http:
//www.prelude-ids.org/.

format

output alert_prelude: profile <name of prelude profile>
[, info <priority number for info priority alerts>]
[, low <priority number for low priority alerts>]
[, medium <priority number for medium priority alerts>]
[, high <priority number for high priority alerts>]
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output alert_prelude: profile snort, info 4, low 3, medium 2, high 1

Figure 2.16: alert prelude configuration example

2.3.10 log null

Sometimes it is useful to be able to create rules that will alert to certain types of traffic but will not cause packet log
entries. In Snort 1.8.2, the log null plugin was introduced. This is equivalent to using the -n command line option but
it is able to work within a ruletype.

Format

output log_null

output log_null # like using snort -n

ruletype info {
type alert
output alert_fast: info.alert
output log_null

}

Figure 2.17: Log Null Usage Example
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Chapter 3

Writing Snort Rules
How to Write Snort Rules and Keep Your
Sanity

3.1 The Basics

Snort uses a simple, lightweight rules description language that is flexible and quite powerful. There are a number of
simple guidelines to remember when developing Snort rules.

Most Snort rules are written in a single line. This was required in versions prior to 1.8. In current versions of Snort,
rules may span multiple lines by adding a backslash \ to the end of the line.

Snort rules are divided into two logical sections, the rule header and the rule options. The rule header contains
the rule’s action, protocol, source and destination IP addresses and netmasks, and the source and destination ports
information. The rule option section contains alert messages and information on which parts of the packet should be
inspected to determine if the rule action should be taken.

Figure 3.1 illustrates a sample Snort rule.

alert tcp any any -> 192.168.1.0/24 111 (content:"|00 01 86 a5|"; msg:"mountd access";)

Figure 3.1: Sample Snort Rule

The text up to the first parenthesis is the rule header and the section enclosed in parenthesis contains the rule options.
The words before the colons in the rule options section are called option keywords.

4! NOTE
Note that the rule options section is not specifically required by any rule, they are just used for the sake of
making tighter definitions of packets to collect or alert on (or drop, for that matter).

All of the elements in that make up a rule must be true for the indicated rule action to be taken. When taken together,
the elements can be considered to form a logical AND statement. At the same time, the various rules in a Snort rules
library file can be considered to form a large logical OR statement.
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3.2 Rules Headers

3.2.1 Rule Actions

The rule header contains the information that defines the who, where, and what of a packet, as well as what to do in
the event that a packet with all the attributes indicated in the rule should show up. The first item in a rule is the rule
action. The rule action tells Snort what to do when it finds a packet that matches the rule criteria. There are 5 available
default actions in Snort, alert, log, pass, activate, and dynamic. In addition, if you are running Snort in inline mode,
you have additional options which include drop, reject, and sdrop.

1. alert - generate an alert using the selected alert method, and then log the packet

2. log - log the packet

3. pass - ignore the packet

4. activate - alert and then turn on another dynamic rule

5. dynamic - remain idle until activated by an activate rule , then act as a log rule

6. drop - make iptables drop the packet and log the packet

7. reject - make iptables drop the packet, log it, and then send a TCP reset if the protocol is TCP or an ICMP port
unreachable message if the protocol is UDP.

8. sdrop - make iptables drop the packet but does not log it.

You can also define your own rule types and associate one or more output plugins with them. You can then use the
rule types as actions in Snort rules.

This example will create a type that will log to just tcpdump:

ruletype suspicious
{

type log
output log_tcpdump: suspicious.log

}

This example will create a rule type that will log to syslog and a MySQL database:

ruletype redalert
{

type alert
output alert_syslog: LOG_AUTH LOG_ALERT
output database: log, mysql, user=snort dbname=snort host=localhost

}

3.2.2 Protocols

The next field in a rule is the protocol. There are four protocols that Snort currently analyzes for suspicious behavior
– tcp, udp, icmp, and ip. In the future there may be more, such as ARP, IGRP, GRE, OSPF, RIP, IPX, etc.
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3.2.3 IP Addresses

The next portion of the rule header deals with the IP address and port information for a given rule. The keyword any
may be used to define any address. Snort does not have a mechanism to provide host name lookup for the IP address
fields in the rules file. The addresses are formed by a straight numeric IP address and a CIDR[3] block. The CIDR
block indicates the netmask that should be applied to the rule’s address and any incoming packets that are tested against
the rule. A CIDR block mask of /24 indicates a Class C network, /16 a Class B network, and /32 indicates a specific
machine address. For example, the address/CIDR combination 192.168.1.0/24 would signify the block of addresses
from 192.168.1.1 to 192.168.1.255. Any rule that used this designation for, say, the destination address would match
on any address in that range. The CIDR designations give us a nice short-hand way to designate large address spaces
with just a few characters.

In Figure 3.1, the source IP address was set to match for any computer talking, and the destination address was set to
match on the 192.168.1.0 Class C network.

There is an operator that can be applied to IP addresses, the negation operator. This operator tells Snort to match any
IP address except the one indicated by the listed IP address. The negation operator is indicated with a !. For example,
an easy modification to the initial example is to make it alert on any traffic that originates outside of the local net with
the negation operator as shown in Figure 3.2.

alert tcp !192.168.1.0/24 any -> 192.168.1.0/24 111 \
(content: "|00 01 86 a5|"; msg: "external mountd access";)

Figure 3.2: Example IP Address Negation Rule

This rule’s IP addresses indicate any tcp packet with a source IP address not originating from the internal network and
a destination address on the internal network.

You may also specify lists of IP addresses. An IP list is specified by enclosing a comma separated list of IP addresses
and CIDR blocks within square brackets. For the time being, the IP list may not include spaces between the addresses.
See Figure 3.3 for an example of an IP list in action.

alert tcp ![192.168.1.0/24,10.1.1.0/24] any -> \
[192.168.1.0/24,10.1.1.0/24] 111 (content: "|00 01 86 a5|"; \
msg: "external mountd access";)

Figure 3.3: IP Address Lists

3.2.4 Port Numbers

Port numbers may be specified in a number of ways, including any ports, static port definitions, ranges, and by
negation. Any ports are a wildcard value, meaning literally any port. Static ports are indicated by a single port
number, such as 111 for portmapper, 23 for telnet, or 80 for http, etc. Port ranges are indicated with the range operator
:. The range operator may be applied in a number of ways to take on different meanings, such as in Figure 3.4.

Port negation is indicated by using the negation operator !. The negation operator may be applied against any of the
other rule types (except any, which would translate to none, how Zen...). For example, if for some twisted reason you
wanted to log everything except the X Windows ports, you could do something like the rule in Figure 3.5.
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log udp any any -> 192.168.1.0/24 1:1024 log udp
traffic coming from any port and destination ports ranging from 1 to 1024

log tcp any any -> 192.168.1.0/24 :6000

log tcp traffic from any port going to ports less than or equal to 6000

log tcp any :1024 -> 192.168.1.0/24 500:

log tcp traffic from privileged ports less than or equal to 1024 going to ports greater than or equal to 500

Figure 3.4: Port Range Examples

log tcp any any -> 192.168.1.0/24 !6000:6010

Figure 3.5: Example of Port Negation
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3.2.5 The Direction Operator

The direction operator -> indicates the orientation, or direction, of the traffic that the rule applies to. The IP address
and port numbers on the left side of the direction operator is considered to be the traffic coming from the source
host, and the address and port information on the right side of the operator is the destination host. There is also a
bidirectional operator, which is indicated with a <> symbol. This tells Snort to consider the address/port pairs in
either the source or destination orientation. This is handy for recording/analyzing both sides of a conversation, such as
telnet or POP3 sessions. An example of the bidirectional operator being used to record both sides of a telnet session is
shown in Figure 3.6.

Also, note that there is no <- operator. In Snort versions before 1.8.7, the direction operator did not have proper
error checking and many people used an invalid token. The reason the <- does not exist is so that rules always read
consistently.

log tcp !192.168.1.0/24 any <> 192.168.1.0/24 23

Figure 3.6: Snort rules using the Bidirectional Operator

3.2.6 Activate/Dynamic Rules

4! NOTE
Activate and Dynamic rules are being phased out in favor of a combination of tagging (3.7.5) and flowbits
(3.6.10).

Activate/dynamic rule pairs give Snort a powerful capability. You can now have one rule activate another when it’s
action is performed for a set number of packets. This is very useful if you want to set Snort up to perform follow on
recording when a specific rule goes off. Activate rules act just like alert rules, except they have a *required* option
field: activates. Dynamic rules act just like log rules, but they have a different option field: activated by. Dynamic
rules have a second required field as well, count.

Activate rules are just like alerts but also tell Snort to add a rule when a specific network event occurs. Dynamic rules
are just like log rules except are dynamically enabled when the activate rule id goes off.

Put ’em together and they look like Figure 3.7.

activate tcp !$HOME_NET any -> $HOME_NET 143 (flags: PA; \
content: "|E8C0FFFFFF|/bin"; activates: 1; \
msg: "IMAP buffer overflow!";)

dynamic tcp !$HOME_NET any -> $HOME_NET 143 (activated_by: 1; count: 50;)

Figure 3.7: Activate/Dynamic Rule Example

These rules tell Snort to alert when it detects an IMAP buffer overflow and collect the next 50 packets headed for port
143 coming from outside $HOME NET headed to $HOME NET. If the buffer overflow happened and was successful,
there’s a very good possibility that useful data will be contained within the next 50 (or whatever) packets going to that
same service port on the network, so there’s value in collecting those packets for later analysis.
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3.3 Rule Options

Rule options form the heart of Snort’s intrusion detection engine, combining ease of use with power and flexibility. All
Snort rule options are separated from each other using the semicolon (;) character. Rule option keywords are separated
from their arguments with a colon (:) character.

There are four major categories of rule options.

meta-data These options provide information about the rule but do not have any affect during detection

payload These options all look for data inside the packet payload and can be inter-related

non-payload These options look for non-payload data

post-detection These options are rule specific triggers that happen after a rule has “fired.”

3.4 Meta-Data Rule Options

3.4.1 msg

The msg rule option tells the logging and alerting engine the message to print along with a packet dump or to an alert.
It is a simple text string that utilizes the \ as an escape character to indicate a discrete character that might otherwise
confuse Snort’s rules parser (such as the semi-colon ; character).

Format

msg: "<message text>";

3.4.2 reference

The reference keyword allows rules to include references to external attack identification systems. The plugin currently
supports several specific systems as well as unique URLs. This plugin is to be used by output plugins to provide a link
to additional information about the alert produced.

Make sure to also take a look at http://www.snort.org/pub-bin/sigs-search.cgi/ for a system that is indexing
descriptions of alerts based off of the sid (See Section 3.4.3).

Table 3.1: Supported Systems

System URL Prefix
bugtraq http://www.securityfocus.com/bid/

cve http://cve.mitre.org/cgi-bin/cvename.cgi?name=
nessus http://cgi.nessus.org/plugins/dump.php3?id=

arachnids (currently down) http://www.whitehats.com/info/IDS
mcafee http://vil.nai.com/vil/dispVirus.asp?virus k=

url http://

Format

reference: <id system>,<id>; [reference: <id system>,<id>;]
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alert tcp any any -> any 7070 (msg:"IDS411/dos-realaudio"; \
flags:AP; content:"|fff4 fffd 06|"; reference:arachnids,IDS411;)

alert tcp any any -> any 21 (msg:"IDS287/ftp-wuftp260-venglin-linux"; \
flags:AP; content:"|31c031db 31c9b046 cd80 31c031db|"; \
reference:arachnids,IDS287; reference:bugtraq,1387; \
reference:cve,CAN-2000-1574;)

Figure 3.8: Reference Usage Examples

3.4.3 sid

The sid keyword is used to uniquely identify Snort rules. This information allows output plugins to identify rules
easily. This option should be used with the rev keyword. (See section 3.4.4)

• <100 Reserved for future use

• 100-1,000,000 Rules included with the Snort distribution

• >1,000,000 Used for local rules

The file sid-msg.map contains a mapping of alert messages to Snort rule IDs. This information is useful when post-
processing alert to map an ID to an alert message.

Format

sid: <snort rules id>;

Example

This example is a rule with the Snort Rule ID of 1000983.

alert tcp any any -> any 80 (content:"BOB"; sid:1000983; rev:1;)

3.4.4 rev

The sid keyword is used to uniquely identify revisions of Snort rules. Revisions, along with Snort rule id’s, allow
signatures and descriptions to be refined and replaced with updated information. This option should be used with the
sid keyword. (See section 3.4.3)

Format

rev: <revision integer>

Example

This example is a rule with the Snort Rule Revision of 1.

alert tcp any any -> any 80 (content:"BOB"; sid:1000983; rev:1;)
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3.4.5 classtype

The classtype keyword categorizes alerts to be attack classes. By using the and prioritized. The user can specify what
priority each type of rule classification has. Rules that have a classification will have a default priority set.

Format

classtype: <class name>;

Rule classifications are defined in the classification.config file. The config file uses the following syntax:

config classification: <class name>,<class description>,<default priority>

The standard classifications included with Snort are listed in Table 3.2. The standard classifications are ordered with 3
default priorities currently. A priority 1 is the most severe priority level of the default rule set and 4 is the least severe.

Table 3.2: Snort Default Classifications

Classtype Description Priority
attempted-admin Attempted Administrator Privilege Gain high
attempted-user Attempted User Privilege Gain high
shellcode-detect Executable code was detected high
successful-admin Successful Administrator Privilege Gain high
successful-user Successful User Privilege Gain high
trojan-activity A Network Trojan was detected high
unsuccessful-user Unsuccessful User Privilege Gain high
web-application-attack Web Application Attack high
attempted-dos Attempted Denial of Service medium
attempted-recon Attempted Information Leak medium
bad-unknown Potentially Bad Traffic medium
denial-of-service Detection of a Denial of Service Attack medium
misc-attack Misc Attack medium
non-standard-protocol Detection of a non-standard protocol or event medium
rpc-portmap-decode Decode of an RPC Query medium
successful-dos Denial of Service medium
successful-recon-largescale Large Scale Information Leak medium
successful-recon-limited Information Leak medium
suspicious-filename-detect A suspicious filename was detected medium
suspicious-login An attempted login using a suspicious user-

name was detected
medium

system-call-detect A system call was detected medium
unusual-client-port-connection A client was using an unusual port medium
web-application-activity access to a potentially vulnerable web appli-

cation
medium

icmp-event Generic ICMP event low
misc-activity Misc activity low
network-scan Detection of a Network Scan low
not-suspicious Not Suspicious Traffic low
protocol-command-decode Generic Protocol Command Decode low
string-detect A suspicious string was detected low
unknown Unknown Traffic low
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alert tcp any any -> any 80 (msg:"EXPLOIT ntpdx overflow"; \
dsize: >128; classtype:attempted-admin; priority:10 );

alert tcp any any -> any 25 (msg:"SMTP expn root"; flags:A+; \
content:"expn root"; nocase; classtype:attempted-recon;)

Figure 3.9: Example Classtype Rules

Warnings

classtype uses classifications defined by the classification config option. The classifications used by the rules provided
with Snort are defined in etc/classification.config

3.4.6 Priority

The priority tag assigns a severity level to rules. A classtype rule assigns a default priority that may be overridden with
a priority rule. For an example in conjunction with a classification rule refer to Figure 3.9. For use by itself, see Figure
3.10

Format

priority: <priority integer>;

alert TCP any any -> any 80 (msg: "WEB-MISC phf attempt"; flags:A+; \
content: "/cgi-bin/phf"; priority:10;)

Figure 3.10: Example Priority Rule

3.5 Payload Detection Rule Options

3.5.1 content

The content keyword is one of the more important features of Snort. It allows the user to set rules that search for
specific content in the packet payload and trigger response based on that data. Whenever a content option pattern
match is performed, the Boyer-Moore pattern match function is called and the (rather computationally expensive) test
is performed against the packet contents. If data exactly matching the argument data string is contained anywhere
within the packet’s payload, the test is successful and the remainder of the rule option tests are performed. Be aware
that this test is case sensitive.

The option data for the content keyword is somewhat complex; it can contain mixed text and binary data. The binary
data is generally enclosed within the pipe (|) character and represented as bytecode. Bytecode represents binary data
as hexadecimal numbers and is a good shorthand method for describing complex binary data. Figure 3.11 contains an
example of mixed text and binary data in a Snort rule.

Note that multiple content rules can be specified in one rule. This allows rules to be tailored for less false positives.

If the rule is preceded by a !, the alert will be triggered on packets that do not contain this content. This is useful when
writing rules that want to alert on packets that do not match a certain pattern

4! NOTE
Also note that the following characters must be escaped inside a content rule:
: ; \ "
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Format

content: [!] "<content string>";

Example

alert tcp any any -> any 139 (content:"|5c 00|P|00|I|00|P|00|E|00 5c|";)

Figure 3.11: Mixed Binary Bytecode and Text in a ’content’ keyword

alert tcp any any -> any 80 (content:!"GET";)

Figure 3.12: Negation Example

Changing content behavior

The content keyword has a number of modifier keywords. The modifier keywords change how the previously speci-
fied content works. These modifier keywords are:

1. depth

2. offset

3. distance

4. within

5. nocase

6. rawbytes

3.5.2 nocase

The nocase keyword allows the rule writer to specify that the Snort should look for the specific pattern, ignoring case.
nocase modifies the previous ’content’ keyword in the rule.

Format

nocase;

Example

alert tcp any any -> any 21 (msg:"FTP ROOT"; content:"USER root"; nocase;)

Figure 3.13: Content rule with nocase modifier

3.5.3 rawbytes

The rawbytes keyword allows rules to look at the raw packet data, ignoring any decoding that was done by preproces-
sors. This acts as a modifier to the previous content 3.5.1 option.
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format

rawbytes;

Example

This example tells the content pattern matcher to look at the raw traffic, instead of the decoded traffic provided by the
telnet decoder.

alert tcp any any -> any 21 (msg: "Telnet NOP"; content: "|FF F1|"; rawbytes;)

3.5.4 depth

The depth keyword allows the rule writer to specify how far into a packet Snort should search for the specified pattern.
depth modifies the previous ‘content’ keyword in the rule.

A depth of 5 would tell Snort to only look look for the specified pattern within the first 5 bytes of the payload.

As the depth keyword is a modifier to the previous ‘content’ keyword, there must be a content in the rule before ‘depth’
is specified.

See Figure 3.14 for an example of a combined content, offset, and depth search rule.

Format

depth: <number>;

3.5.5 offset

The offset keyword allows the rule writer to specify where to start searching for a pattern within a packet. offset
modifies the previous ’content’ keyword in the rule.

An offset of 5 would tell Snort to start looking for the specified pattern after the first 5 bytes of the payload.

As this keyword is a modifier to the previous ’content’ keyword, there must be a content in the rule before ’offset’ is
specified.

See Figure 3.14 for an example of a combined content, offset, and depth search rule.

Format

offset: <number>;

alert tcp any any -> any 80 (content: "cgi-bin/phf"; offset:4; depth:20;)

Figure 3.14: Combined Content, Offset and Depth Rule. Skip the first 4 bytes, and look for cgi-bin/phf in the next 20
bytes

3.5.6 distance

The distance keyword allows the rule writer to specify how far into a packet Snort should ignore before starting to
search for the specified pattern relative to the end of the previous pattern match.

This can be thought of as exactly the same thing as depth (See Section 3.5.5), except it is relative to the end of the last
pattern match instead of the beginning of the packet.
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Format

distance: <byte count>;

Example

The rule listed in Figure 3.15 maps to a regular expression of /ABCDE.{1}EFGH/.

alert tcp any any -> any any (content:"ABC"; content: "DEF"; distance:1;)

Figure 3.15: distance usage example

3.5.7 within

The within keyword is a content modifier that makes sure that at most N bytes are between pattern matches using the
Content ( See Section 3.5.1 ). It’s designed to be used in conjunction with the distance (Section 3.5.6) rule option.

The rule listed in Figure 3.16 constrains the search to not go past 10 bytes past the ABCDE match.

Format

within: <byte count>;

Examples

alert tcp any any -> any any (content:"ABC"; content: "EFG"; within:10;)

Figure 3.16: within usage example

3.5.8 uricontent

The uricontent parameter in the Snort rule language searches the NORMALIZED request URI field. This means that
if you are writing rules that include things that are normalized, such as %2f or directory traversals, these rules will not
alert. The reason is that the things you are looking for are normalized out of the URI buffer.

For example, the URI:

/scripts/..%c0%af../winnt/system32/cmd.exe?/c+ver

will get normalized into:

/winnt/system32/cmd.exe?/c+ver

Another example, the URI:
\begin{verbatim} /cgi-bin/aaaaaaaaaaaaaaaaaaaaaaaaaa/..%252fp%68f?

will get normalized into:

/cgi-bin/phf?
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When writing a uricontent rule, write the content that you want to find in the context that the URI will be normalized.
For example, if Snort normalizes directory traversals, do not include directory traversals.

You can write rules that look for the non-normalized content by using the content option. (See Section 3.5.1)

For a description of the parameters to this function, see the content rule options in Section 3.5.1.

This option works in conjunction with the HTTP Inspect preprocessor specified in Section 2.1.11.

Format

uricontent:[!]<content string>;

3.5.9 isdataat

Verify that the payload has data at a specified location, optionally looking for data relative to the end of the previous
content match.

Format

isdataat:<int>[,relative];

Example

alert tcp any any -> any 111 (content:"PASS"; isdataat:50,relative; \
content:!"|0a|"; distance:0;)

This rule looks for the string PASS exists in the packet, then verifies there is at least 50 bytes after the end of the string
PASS, then verifies that there is not a newline character within 50 bytes of the end of the PASS string.

3.5.10 pcre

The pcre keyword allows rules to be written using perl compatible regular expressions. For more detail on what can
be done via a pcre regular expression, check out the PCRE web site http://www.pcre.org

Format

pcre:[!]"(/<regex>/|m<delim><regex><delim>)[ismxAEGRUB]";

The post-re modifiers set compile time flags for the regular expression.

Table 3.3: Perl compatible modifiers

i case insensitive
s include newlines in the dot metacharacter
m By default, the string is treated as one big line of characters. ˆ

and $ match at the beginning and ending of the string. When
m is set, ˆ and $ match immediately following or immediately
before any newline in the buffer, as well as the very start and
very end of the buffer.

x whitespace data characters in the pattern are ignored except
when escaped or inside a character class
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Table 3.4: PCRE compatible modifiers

A the pattern must match only at the start of the buffer (same as ˆ
)

E Set $ to match only at the end of the subject string. Without E,
$ also matches immediately before the final character if it is a
newline (but not before any other newlines).

G Inverts the ”greediness” of the quantifiers so that they are not
greedy by default, but become greedy if followed by ”?”.

Table 3.5: Snort specific modifiers

R Match relative to the end of the last pattern match. (Similar to
distance:0;)

U Match the decoded URI buffers (Similar to uricontent)
B Do not use the decoded buffers (Similar to rawbytes)

The modifiers R and B should not be used together.

Example

This example performs a case-insensitive search for the string BLAH in the payload.

alert ip any any -> any any (pcre:"/BLAH/i";)

3.5.11 byte test

Test a byte field against a specific value (with operator). Capable of testing binary values or converting representative
byte strings to their binary equivalent and testing them.

For a more detailed explanation, please read Section 3.11.5.

Format

byte_test: <bytes to convert>, [!]<operator>, <value>, <offset> \
[,relative] [,<endian>] [,<number type>, string];
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Option Description

bytes to convert Number of bytes to pick up from the packet
operator Operation to perform to test the value:

• < - less than

• > - greater than

• = - equal

• ! - not

• & - bitwise AND

• -̂ bitwise OR

value Value to test the converted value against
offset Number of bytes into the payload to start processing
relative Use an offset relative to last pattern match
endian Endian type of the number being read:

• big - Process data as big endian (default)

• little - Process data as little endian

string Data is stored in string format in packet
number type Type of number being read:

• hex - Converted string data is represented in hexadecimal

• dec - Converted string data is represented in decimal

• oct - Converted string data is represented in octal

Any of the operators can also include ! to check if the operator is not true. If ! is specified without an operator, then
the operator is set to =.

4! NOTE
Snort uses the C operators for each of these operators. If the & operator is used, then it would be the same as
using if (data & value) { do something();}

3.5.12 byte jump

The byte jump option allows rules to be written for length encoded protocols trivially. By having an option that reads
the length of a portion of data, then skips that far forward in the packet, rules can be written that skip over specific
portions of length-encoded protocols and perform detection in very specific locations.

The byte jump option does this by reading some number of bytes, convert them to their numeric representation, move
that many bytes forward and set a pointer for later detection. This pointer is known as the detect offset end pointer, or
doe ptr.

For a more detailed explanation, please read Section 3.11.5.

Format

byte_jump: <bytes_to_convert>, <offset> \
[,relative] [,multiplier <multiplier value>] [,big] [,little][,string]\
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alert udp $EXTERNAL_NET any -> $HOME_NET any \
(msg:"AMD procedure 7 plog overflow "; \
content: "|00 04 93 F3|"; \
content: "|00 00 00 07|"; distance: 4; within: 4; \
byte_test: 4,>, 1000, 20, relative;)

alert tcp $EXTERNAL_NET any -> $HOME_NET any \
(msg:"AMD procedure 7 plog overflow "; \
content: "|00 04 93 F3|"; \
content: "|00 00 00 07|"; distance: 4; within: 4; \
byte_test: 4, >,1000, 20, relative;)

alert udp any any -> any 1234 \
(byte_test: 4, =, 1234, 0, string, dec; \
msg: "got 1234!";)

alert udp any any -> any 1235 \
(byte_test: 3, =, 123, 0, string, dec; \
msg: "got 123!";)

alert udp any any -> any 1236 \
(byte_test: 2, =, 12, 0, string, dec; \
msg: "got 12!";)

alert udp any any -> any 1237 \
(byte_test: 10, =, 1234567890, 0, string, dec; \
msg: "got 1234567890!";)

alert udp any any -> any 1238 \
(byte_test: 8, =, 0xdeadbeef, 0, string, hex; \
msg: "got DEADBEEF!";)

Figure 3.17: Byte Test Usage Example
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[,hex] [,dec] [,oct] [,align] [,from_beginning];

Option Description

bytes to convert Number of bytes to pick up from the packet
offset Number of bytes into the payload to start processing
relative Use an offset relative to last pattern match
multiplier <value> Multiply the number of calculated bytes by <value> and skip forward that number of

bytes.
big Process data as big endian (default)
little Process data as little endian
string Data is stored in string format in packet
hex Converted string data is represented in hexadecimal
dec Converted string data is represented in decimal
oct Converted string data is represented in octal
align Round the number of converted bytes up to the next 32-bit boundary
from beginning Skip forward from the beginning of the packet payload instead of from the current position

in the packet.

alert udp any any -> any 32770:34000 (content: "|00 01 86 B8|"; \
content: "|00 00 00 01|"; distance: 4; within: 4; \
byte_jump: 4, 12, relative, align; \
byte_test: 4, >, 900, 20, relative; \
msg: "statd format string buffer overflow";)

Figure 3.18: byte jump Usage Example

3.5.13 ftpbounce

The ftpbounce keyword detects FTP bounce attacks.

Format

ftpbounce;

Example

alert tcp $EXTERNAL_NET any -> $HOME_NET 21 (msg:"FTP PORT bounce attempt"; \
flow:to_server,established; content:"PORT"; nocase; ftpbounce; pcre:"/ˆPORT/smi";\
classtype:misc-attack; sid:3441; rev:1;)

3.5.14 regex

The regex keyword has been superceded by PCRE. See Section 3.5.10.

3.5.15 content-list

The content-list keyword is broken and should not be used.
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3.6 Non-payload Detection Rule Options

3.6.1 fragoffset

The fragoffset keyword allows one to compare the IP fragment offset field against a decimal value. To catch all the first
fragments of an IP session, you could use the fragbits keyword and look for the More fragments option in conjunction
with a fragoffset of 0.

Format

fragoffset:[<|>]<number>

alert ip any any -> any any \
(msg: "First Fragment"; fragbits: M; fragoffset: 0;)

Figure 3.19: Fragoffset Usage Example

3.6.2 ttl

The ttl keyword is used to check the IP time-to-live value. This option keyword was intended for use in the detection
of traceroute attempts.

Format

ttl:[[<number>-]><=]<number>;

Example

This example checks for a time-to-live value that is less than 3.

ttl:<3;

This example checks for a time-to-live value that between 3 and 5.

ttl:3-5;

3.6.3 tos

The tos keyword is used to check the IP TOS field for a specific value.

Format

tos:[!]<number>;

Example

This example looks for a tos value that is not 4

tos:!4;
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3.6.4 id

The id keyword is used to check the IP ID field for a specific value. Some tools (exploits, scanners and other odd
programs) set this field specifically for various purposes, for example, the value 31337 is very popular with some
hackers.

Format

id:<number>;

Example

This example looks for the IP ID of 31337.

id:31337;

3.6.5 ipopts

The ipopts keyword is used to check if a specific IP option is present.

The following options may be checked:

rr - Record route

eol - End of list

nop - No op

ts - Time Stamp

sec - IP security option

lsrr - Loose source routing

ssrr - Strict source routing

satid - Stream identifier

any - any IP options are set

The most frequently watched for IP options are strict and loose source routing which aren’t used in any widespread
internet applications.

Format

ipopts:<rr|eol|nop|ts|sec|lsrr|ssrr|satid|any>;

Example

This example looks for the IP Option of Loose Source Routing.

ipopts:lsrr;

Warning

Only a single ipopts keyword may be specified per rule.
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3.6.6 fragbits

The fragbits keyword is used to check if fragmentation and reserved bits are set in the IP header.

The following bits may be checked:

M - More Fragments

D - Don’t Fragment

R - Reserved Bit

The following modifiers can be set to change the match criteria:

+ match on the specified bits, plus any others

* match if any of the specified bits are set

! match if the specified bits are not set

Format

fragbits:[+*!]<[MDR]>

Example

This example checks if the More Fragments bit and the Do not Fragment bit are set.

fragbits:MD+;

3.6.7 dsize

The dsize keyword is used to test the packet payload size. This may be used to check for abnormally sized packets. In
many cases, it is useful for detecting buffer overflows.

Format

dsize: [<>]<number>[<><number>];

Example

This example looks for a dsize that is between 300 and 400 bytes.

dsize:300<>400;

Warning

dsize will fail on stream rebuilt packets, regardless of the size of the payload.
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3.6.8 flags

The flags keyword is used to check if specific TCP flag bits are present.

The following bits may be checked:

F - FIN (LSB in TCP Flags byte)

S - SYN

R - RST

P - PSH

A - ACK

U - URG

1 - Reserved bit 1 (MSB in TCP Flags byte)

2 - Reserved bit 2

0 - No TCP Flags Set

The following modifiers can be set to change the match criteria:

+ - match on the specified bits, plus any others

* - match if any of the specified bits are set

! - match if the specified bits are not set

To handle writing rules for session initiation packets such as ECN where a SYN packet is sent with the previously
reserved bits 1 and 2 set, an option mask may be specified. A rule could check for a flags value of S,12 if one wishes
to find packets with just the syn bit, regardless of the values of the reserved bits.

Format

flags:[!|*|+]<FSRPAU120>[,<FSRPAU120>];

Example

This example checks if just the SYN and the FIN bits are set, ignoring reserved bit 1 and reserved bit 2.

alert tcp any any -> any any (flags:SF,12;)

3.6.9 flow

The flow rule option is used in conjunction with TCP stream reassembly (see Section 2.1.3). It allows rules to only
apply to certain directions of the traffic flow.

This allows rules to only apply to clients or servers. This allows packets related to $HOME NET clients viewing web
pages to be distinguished from servers running the $HOME NET.

The established keyword will replace the flags: A+ used in many places to show established TCP connections.
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Options

Option Description
to client Trigger on server responses from A to B
to server Trigger on client requests from A to B
from client Trigger on client requests from A to B
from server Trigger on server responses from A to B
established Trigger only on established TCP connections
stateless Trigger regardless of the state of the stream processor (useful for packets that are designed

to cause machines to crash)
no stream Do not trigger on rebuilt stream packets (useful for dsize and stream4)
only stream Only trigger on rebuilt stream packets

Format

flow: [(established|stateless)]
[,(to_client|to_server|from_client|from_server)]
[,(no_stream|only_stream)]

alert tcp !$HOME_NET any -> $HOME_NET 21 (msg:"cd incoming detected"; \
flow:from_client; content:"CWD incoming"; nocase;)

alert tcp !$HOME_NET 0 -> $HOME_NET 0 (msg: "Port 0 TCP traffic"; \
flow:stateless;)

Figure 3.20: Flow usage examples

3.6.10 flowbits

The flowbits rule option is used in conjunction with conversation tracking from the Flow preprocessor (see Section2.1.4).
It allows rules to track states across transport protocol sessions. The flowbits option is most useful for TCP sessions,
as it allows rules to generically track the state of an application protocol.

There are seven keywords associated with flowbits. Most of the options need a user-defined name for the specific
state that is being checked. This string should be limited to any alphanumeric string including periods, dashes, and
underscores.

Option Description

set Sets the specified state for the current flow.
unset Unsets the specified state for the current flow.
toggle Sets the specified state if the state is unset, otherwise unsets the state if the state is set.
isset Checks if the specified state is set.
isnotset Checks if the specified state is not set.
noalert Cause the rule to not generate an alert, regardless of the rest of the detection options.

Format

flowbits: [set|unset|toggle|isset,reset,noalert][,<STATE_NAME>];

3.6.11 seq

The seq keyword is used to check for a specific TCP sequence number.
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alert tcp any 143 -> any any (msg:"IMAP login";
content:"OK LOGIN"; flowbits:set,logged_in;
flowbits:noalert;)

alert tcp any any -> any 143 (msg:"IMAP LIST"; content:"LIST";
flowbits:isset,logged_in;)

Figure 3.21: Flowbits Usage Examples

Format

seq:<number>;

Example

This example looks for a TCP sequence number of 0.

seq:0;

3.6.12 ack

The ack keyword is used to check for a specific TCP acknowledge number.

Format

ack: <number>;

Example

This example looks for a TCP acknowledge number of 0.

ack:0;

3.6.13 window

The ack keyword is used to check for a specific TCP window size.

Format

window:[!]<number>;

Example

This example looks for a TCP window size of 55808.

window:55808;

3.6.14 itype

The itype keyword is used to check for a specific ICMP type value.
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Format

itype:[<|>]<number>[<><number>];

Example

This example looks for an ICMP type greater than 30.

itype:>30;

3.6.15 icode

The itype keyword is used to check for a specific ICMP code value.

Format

icode: [<|>]<number>[<><number>];

Example

This example looks for an ICMP code greater than 30.

code:>30;

3.6.16 icmp id

The itype keyword is used to check for a specific ICMP ID value.

This is useful because some covert channel programs use static ICMP fields when they communicate. This particular
plugin was developed to detect the stacheldraht DDoS agent.

Format

icmp_id:<number>;

Example

This example looks for an ICMP ID of 0.

icmp_id:0;

3.6.17 icmp seq

The itype keyword is used to check for a specific ICMP sequence value.

This is useful because some covert channel programs use static ICMP fields when they communicate. This particular
plugin was developed to detect the stacheldraht DDoS agent.

Format

icmp_seq: <number>;
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Example

This example looks for an ICMP Sequence of 0.

icmp_seq:0;

3.6.18 rpc

The rpc keyword is used to check for a RPC application, version, and procedure numbers in SUNRPC CALL requests.

Wildcards are valid for both version and procedure numbers by using ’*’;

Format

rpc: <application number>, [<version number>|*], [<procedure number>|*]>;

Example

The following example looks for an RPC portmap GETPORT request.

alert tcp any any -> any 111 (rpc: 100000,*,3;);

Warning

Because of the fast pattern matching engine, the RPC keyword is slower than looking for the RPC values by using
normal content matching.

3.6.19 ip proto

The ip proto keyword allows checks against the IP protocol header. For a list of protocols that may be specified by
name, see /etc/protocols.

Format

ip_proto:[!><] <name or number>;

Example

This example looks for IGMP traffic.

alert ip any any -> any any (ip_proto:igmp;)

3.6.20 sameip

The sameip keyword allows rules to check if the source ip is the same as the destination IP.

Format

sameip;
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Example

This example looks for any traffic where the Source IP and the Destination IP is the same.

alert ip any any -> any any (sampeip;)

3.7 Post-Detection Rule Options

3.7.1 logto

The logto option tells Snort to log all packets that trigger this rule to a special output log file. This is especially handy
for combining data from things like NMAP activity, HTTP CGI scans, etc. It should be noted that this option does not
work when Snort is in binary logging mode.

Format

logto:"filename";

3.7.2 session

The session keyword is built to extract user data from TCP Sessions. There are many cases where seeing what users
are typing in telnet, rlogin, ftp, or even web sessions is very useful.

There are two available argument keywords for the session rule option, printable or all. The printable keyword only
prints out data that the user would normally see or be able to type.

The all keyword substitutes non-printable characters with their hexadecimal equivalents.

Format

session: [printable|all];

Example

The following example logs all printable strings in a telnet packet.

log tcp any any <> any 23 (session:printable;)

Warnings

Using the session keyword can slow Snort down considerably, so it should not be used in heavy load situations. The
session keyword is best suited for post-processing binary (pcap) log files.

3.7.3 resp

The resp keyword is used attempt to close sessions when an alert is triggered. In Snort, this is called flexible response.

Flexible Response supports the following mechanisms for attempting to close sessions:
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Option Description

rst snd Send TCP-RST packets to the sending socket
rst rcv Send TCP-RST packets to the receiving socket
rst all Send TCP RST packets in both directions
icmp net Send a ICMP NET UNREACH to the sender
icmp host Send a ICMP HOST UNREACH to the sender
icmp port Send a ICMP PORT UNREACH to the sender
icmp all Send all above ICMP packets to the sender

These options can be combined to send multiple responses to the target host.

Format

resp: <resp_mechanism>[,<resp_mechanism>[,<resp_mechanism>]];

Warnings

This functionality is not built in by default. Use the – –enable-flexresp flag to configure when building Snort to enable
this functionality.

Be very careful when using Flexible Response. It is quite easy to get Snort into an infinite loop by defining a rule such
as:

alert tcp any any -> any any (resp:rst_all;)

It is easy to be fooled into interfering with normal network traffic as well.

Example

The following example attempts to reset any TCP connection to port 1524.

alert tcp any any -> any 1524 (flags:S; resp:rst_all;)

3.7.4 react

This keyword implements an ability for users to react to traffic that matches a Snort rule. The basic reaction is blocking
interesting sites users want to access: New York Times, slashdot, or something really important - napster and porn
sites. The React code allows Snort to actively close offending connections and/or send a visible notice to the browser.
The notice may include your own comment. The following arguments (basic modifiers) are valid for this option:

• block - close connection and send the visible notice

• warn - send the visible, warning notice (will be available soon)

The basic argument may be combined with the following arguments (additional modifiers):

• msg - include the msg option text into the blocking visible notice

• proxy: <port nr> - use the proxy port to send the visible notice (will be available soon)

Multiple additional arguments are separated by a comma. The react keyword should be placed as the last one in the
option list.
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alert tcp any any <> 192.168.1.0/24 80 (content: "bad.htm"; \
msg: "Not for children!"; react: block, msg;)

Figure 3.22: React Usage Example

Format

react: <react_basic_modifier[, react_additional_modifier]>;

Warnings

React functionality is not built in by default. This code is currently bundled under Flexible Response, so enabling
Flexible Response (–enable-flexresp) will also enable React.

Be very careful when using react. Causing a network traffic generation loop is very easy to do with this functionality.

3.7.5 tag

The tag keyword allow rules to log more than just the single packet that triggered the rule. Once a rule is triggered,
additional traffic involving the source and/or destination host is tagged. Tagged traffic is logged to allow analysis of
response codes and post-attack traffic. tagged alerts will be sent to the same output plugins as the original alert, but it
is the responsibility of the output plugin to properly handle these special alerts. Currently, the database output plugin,
described in Section 2.3.6, does not properly handle tagged alerts.

Format

tag: <type>, <count>, <metric>, [direction]

type

• session - Log packets in the session that set off the rule
• host - Log packets from the host that caused the tag to activate (uses [direction] modifier)

count - Count is specified as a number of units. Units are specified in the <metric> field.

metric

• packets - Tag the host/session for <count> packets
• seconds - Tag the host/session for <count> seconds

Note, any packets that generate an alert will not be tagged. For example, it may seem that the following rule will tag
the first 600 seconds of any packet involving 10.1.1.1.

alert tcp any any <> any 10.1.1.1 (tag:host,600,seconds,src;)

However, since the rule will fire on every packet involving 10.1.1.1, no packets will get tagged. The flowbits option
would be useful here.

alert tcp any any <> any 10.1.1.1 (flowbits:isnotset,tagged;
flowbits:set,tagged; tag:host,600,seconds,src;)
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Example

This example logs the first 10 seconds of any telnet session.

alert tcp any any -> any 23 (flags:s,12; tag:session,10,seconds;)

3.8 Event Thresholding

Event thresholding can be used to reduce the number of logged alerts for noisy rules. This can be tuned to significantly
reduce false alarms, and it can also be used to write a newer breed of rules. Thresholding commands limit the number
of times a particular event is logged during a specified time interval.

There are 3 types of thresholding:

• limit

Alerts on the 1st m events during the time interval, then ignores events for the rest of the time interval.

• threshold

Alerts every m times we see this event during the time interval.

• both

Alerts once per time interval after seeing m occurrences of the event, then ignores any additional events during
the time interval.

Thresholding commands can be included as part of a rule, or you can use standalone threshold commands that refer-
ence the generator and SID they are applied to. There is no functional difference between adding a threshold to a rule,
or using a separate threshold command applied to the same rule. There is a logical difference. Some rules may only
make sense with a threshold. These should incorporate the threshold command into the rule. For instance, a rule for
detecting a too many login password attempts may require more than 5 attempts. This can be done using the ‘limit’
type of threshold command. It makes sense that the threshold feature is an integral part of this rule.

In order for rule thresholds to apply properly, these rules must contain a SID.

Only one threshold may be applied to any given generator and SID pair. If more than one threshold is applied to a
generator and SID pair, Snort will terminate with an error while reading the configuration information.

3.8.1 Standalone Options

This format supports 6 threshold options as described in Table 3.6—all are required.

Table 3.6: Standalone Options

Option Arguments

gen id <generator ID>

sig id <Snort signature ID>

type limit, threshold, or both
track by src or by dst
count <number of events>
seconds <time period over which count is accrued>
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3.8.2 Standalone Format

threshold gen_id <gen-id>, sig_id <sig-id>, \
type <limit|threshold|both>, \
track <by_src|by_dst>, count <s>, seconds <m>

3.8.3 Rule Keyword Format

This format supports 4 threshold options as described in Table 3.7—all are required.

Table 3.7: Rule Keyword Options

Option Arguments
type limit, threshold, or both
track by src or by dst
count <number of events>
seconds <time period over which count is accrued>

3.8.4 Rule Keyword Format

threshold: type <limit|threshold|both>, track <by_src|by_dst>, \
count <n>, seconds <m>;

For either standalone or rule format, all tracking is by src or by dst ip, ports or anything else are not tracked.

Thresholding can also be used globally, this allows you to specify a threshold for every rule. Standard thresholding
tests are applied first to an event, if they do not block a rule from being logged, and then the global thresholding test is
applied—thresholds in a rule will override a global threshold. Global thresholds do not override what’s in a signature
or a more specific stand-alone threshold.

The global threshold options are the same as the standard threshold options with the exception of the ‘sig id’ field.
The sig id field must be set to 0 to indicate that this threshold command applies to all sig id values with the specified
gen id. To apply the same threshold to all gen id’s at the same time, and with just one command specify a value of
gen id=0.

The format for global threshold commands is as such:

threshold gen_id <gen-id>, sig_id 0, \
type <limit|threshold|both>, \
track <by_src|by_dst>, \
count <n>, \
seconds <m>

This applies a threshold to every event from <gen-id>.

or

threshold gen_id 0 , sig_id 0, \
type <limit|threshold|both>, \
track <by_src|by_dst>, \
count <n>, \
seconds <m>

This applies a threshold to every event from every gen-id.
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3.8.5 Examples

Standalone Thresholds

Limit logging to 1 event per 60 seconds:

threshold gen_id 1, sig_id 1851, \
type limit, track by_src, \
count 1, seconds 60

Limit logging to every 3rd event:

threshold gen_id 1, sig_id 1852, \
type threshold, track by_src, \
count 3, seconds 60

Limit logging to just 1 event per 60 seconds, but only if we exceed 30 events in 60 seconds:

threshold gen_id 1, sig_id 1853, \
type both, track by_src, \
count 30, seconds 60

Rule Thresholds

This rule logs the first event of this SID every 60 seconds.

alert tcp $external_net any -> $http_servers $http_ports \
(msg:"web-misc robots.txt access"; flow:to_server, established; \
uricontent:"/robots.txt"; nocase; reference:nessus,10302; \
classtype:web-application-activity; threshold: type limit, track \
by_src, count 1 , seconds 60 ; sid:1000852; rev:1;)

This rule logs every 10th event on this SID during a 60 second interval. So if less than 10 events occur in 60 seconds,
nothing gets logged. Once an event is logged, a new time period starts for type=threshold.

alert tcp $external_net any -> $http_servers $http_ports \
(msg:"web-misc robots.txt access"; flow:to_server, established; \
uricontent:"/robots.txt"; nocase; reference:nessus,10302; \
classtype:web-application-activity; threshold: type threshold, \
track by_dst, count 10 , seconds 60 ; sid:1000852; rev:1;)

This rule logs at most one event every 60 seconds if at least 10 events on this SID are fired.

alert tcp $external_net any -> $http_servers $http_ports \
(msg:"web-misc robots.txt access"; flow:to_server, established; \
uricontent:"/robots.txt"; nocase; reference:nessus,10302; \
classtype:web-application-activity; threshold: type both , track \
by_dst, count 10 , seconds 60 ; sid:1000852; rev:1;)

Global Thresholds

Limit to logging 1 event per 60 seconds per IP triggering each rule (rule gen id is 1):

threshold gen_id 1, sig_id 0, type limit, track by_src, count 1, seconds 60
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Limit to logging 1 event per 60 seconds per IP, triggering each rule for each event generator:

threshold gen_id 0, sig_id 0, type limit, track by_src, count 1, seconds 60

Events in Snort are generated in the usual way, thresholding is handled as part of the output system. Read gen-msg.map
for details on gen ids.

Users can also configure a memcap for threshold with a “config:” option:

config threshold: memcap <bytes>
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3.9 Event Suppression

Event suppression stops specified events from firing without removing the rule from the rule base. Suppression uses
a CIDR block notation to select specific networks and users for suppression. Suppression tests are performed prior to
either standard or global thresholding tests.

Suppression commands are standalone commands that reference generators, SIDs, and IP addresses via a CIDR block.
This allows a rule to be completely suppressed, or suppressed when the causative traffic is going to or coming from a
specific IP or group of IP addresses.

You may apply multiple suppression commands to a SID. You may also combine one threshold command and several
suppression commands to the same SID.

3.9.1 Format

The suppress command supports either 2 or 4 options, as described in Table 3.8.

Table 3.8: Suppression Options

Option Argument Required?

gen id <generator id> required
sig id <Snort signature id> required
track by src or by dst optional, requires ip
ip ip[/mask] optional, requires track

suppress gen_id <gen-id>, sig_id <sig-id>, \
track <by_src|by_dst>, ip <ip|mask-bits>

3.9.2 Examples

Suppress this event completely:

suppress gen_id 1, sig_id 1852:

Suppress this event from this IP:

suppress gen_id 1, sig_id 1852, track by_src, ip 10.1.1.54

Suppress this event to this CIDR block:

suppress gen_id 1, sig_id 1852, track by_dst, ip 10.1.1.0/24
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3.10 Snort Multi-Event Logging (Event Queue)

Snort supports logging multiple events per packet/stream that are prioritized with different insertion methods, such as
max content length or event ordering using the event queue.

The general configuration of the event queue is as follows:

config event_queue: [max_events [size]] [log [size]] [order_events [TYPE]]

3.10.1 Event Queue Configuration Options

There are three configuration options to the configuration parameter ’event queue’.

1. max queue

This determines the maximum size of the event queue. For example, if the event queue has a max size of 8, only
8 events will be stored for a single packet or stream.
The default value is 8.

2. log

This determines the number of events to log for a given packet or stream. You can’t log more than the max event
number that was specified.
The default value is 3.

3. order events

This argument determines the way that the incoming events are ordered. We currently have two different meth-
ods:

• priority - The highest priority (1 being the highest) events are ordered first.
• content length - Rules are ordered before decode or preprocessor alerts, and rules that have a longer

content are ordered before rules with shorter contents.

The method in which events are ordered does not affect rule types such as pass, alert, log, etc.
The default value is content length.

3.10.2 Event Queue Configuration Examples

The default configuration:

config event_queue: max_queue 8 log 3 order_events content_length

Example of a reconfigured event queue:

config event_queue: max_queue 10 log 3 order_events content_length

Use the default event queue values, but change event order:

config event_queue: order_events priority

Use the default event queue values but change the number of logged events:

config event_queue: log 2
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3.11 Writing Good Rules

There are some general concepts to keep in mind when developing Snort rules to maximize efficiency and speed.

3.11.1 Content Matching

The 2.0 detection engine changes the way Snort works slightly by having the first phase be a setwise pattern match.
The longer a content option is, the more exact the match. Rules without content (or uricontent) slow the entire system
down.

While some detection options, such as pcre and byte test, perform detection in the payload section of the packet, they
do not use the setwise pattern matching engine. If at all possible, try and have at least one content option if at all
possible.

3.11.2 Catch the Vulnerability, Not the Exploit

Try to write rules that target the vulnerability, instead of a specific exploit.

For example, look for a the vulnerable command with an argument that is too large, instead of shellcode that binds a
shell.

By writing rules for the vulnerability, the rule is less vulnerable to evasion when an attacker changes the exploit
slightly.

3.11.3 Catch the Oddities of the Protocol in the Rule

Many services typically send the commands in upper case letters. FTP is a good example. In FTP, to send the
username, the client sends:

user username_here

A simple rule to look for FTP root login attempts could be:

alert tcp any any -> any any 21 (content:"user root";)

While it may seem trivial to write a rule that looks for the username root, a good rule will handle all of the odd things
that the protocol might handle when accepting the user command.

For example, each of the following are accepted by most FTP servers:

user root
user root
user root
user root
user<tab>root

To handle all of the cases that the FTP server might handle, the rule needs more smarts than a simple string match.

A good rule that looks for root login on ftp would be:

alert tcp any any -> any 21 (flow:to_server,established; content:"root";
pcre:"/user\s+root/i";)

There are a few important things to note in this rule:
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• The rule has a flow option, verifying this is traffic going to the server on an enstablished session.

• The rule has a content option, looking for root, which is the longest, most unique string in the attack. This option
is added to allow Snort’s setwise pattern match detection engine to give Snort a boost in speed.

• The rule has a pcre option, looking for user, followed at least one space character (which includes tab), followed
by root, ignoring case.

3.11.4 Optimizing Rules

The content matching portion of the detection engine has recursion to handle a few evasion cases. Rules that are not
properly written can cause Snort to waste time duplicating checks.

The way the recursion works now is if a pattern matches, and if any of the detection options after that pattern fail, then
look for the pattern again after where it was found the previous time. Repeat until the pattern is not found again or the
opt functions all succeed.

On first read, that may not sound like a smart idea, but it is needed. For example, take the following rule:

alert ip any any -> any any (content:"a"; content:"b"; within:1;)

This rule would look for “a”, immediately followed by “b”. Without recursion, the payload “aab” would fail, even
though it is obvious that the payload “aab” has “a” immediately followed by “b”, because the first ”a” is not immedi-
ately followed by “b”.

While recursion is important for detection, the recursion implementation is not very smart.

For example, the following rule options are not optimized:

content:"|13|"; dsize:1;

By looking at this rule snippit, it is obvious the rule looks for a packet with a single byte of 0x13. However, because
of recursion, a packet with 1024 bytes of 0x13 could cause 1023 too many pattern match attempts and 1023 too many
dsize checks. Why? The content 0x13 would be found in the first byte, then the dsize option would fail, and because
of recursion, the content 0x13 would be found again starting after where the previous 0x13 was found, once it is found,
then check the dsize again, repeating until 0x13 is not found in the payload again.

Reordering the rule options so that discrete checks (such as dsize) are moved to the begining of the rule speed up
Snort.

The optimized rule snipping would be:

dsize:1; content:"|13|";

A packet of 1024 bytes of 0x13 would fail immediately, as the dsize check is the first option checked and dsize is a
discrete check without recursion.

The following rule options are discrete and should generally be placed at the begining of any rule:

• dsize

• flags

• flow

• fragbits

• icmp id

• icmp seq

• icode
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• id

• ipopts

• ip proto

• itype

• seq

• session

• tos

• ttl

• ack

• window

• resp

• sameip

3.11.5 testing numerical values

The rule options byte test and byte jump were written to support writing rules for protocols that have length encoded
data. RPC was the protocol that spawned the requirement for these two rule options, as RPC uses simple length based
encoding for passing data.

In order to understand why byte test and byte jump are useful, let’s go through an exploit attempt against the sadmind
service.

This is the payload of the exploit:

89 09 9c e2 00 00 00 00 00 00 00 02 00 01 87 88 ................
00 00 00 0a 00 00 00 01 00 00 00 01 00 00 00 20 ...............
40 28 3a 10 00 00 00 0a 4d 45 54 41 53 50 4c 4f @(:.....metasplo
49 54 00 00 00 00 00 00 00 00 00 00 00 00 00 00 it..............
00 00 00 00 00 00 00 00 40 28 3a 14 00 07 45 df ........@(:...e.
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
00 00 00 00 00 00 00 06 00 00 00 00 00 00 00 00 ................
00 00 00 00 00 00 00 04 00 00 00 00 00 00 00 04 ................
7f 00 00 01 00 01 87 88 00 00 00 0a 00 00 00 04 ................
7f 00 00 01 00 01 87 88 00 00 00 0a 00 00 00 11 ................
00 00 00 1e 00 00 00 00 00 00 00 00 00 00 00 00 ................
00 00 00 00 00 00 00 3b 4d 45 54 41 53 50 4c 4f .......;metasplo
49 54 00 00 00 00 00 00 00 00 00 00 00 00 00 00 it..............
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
00 00 00 00 00 00 00 06 73 79 73 74 65 6d 00 00 ........system..
00 00 00 15 2e 2e 2f 2e 2e 2f 2e 2e 2f 2e 2e 2f ....../../../../
2e 2e 2f 62 69 6e 2f 73 68 00 00 00 00 00 04 1e ../bin/sh.......
<snip>

Let’s break this up, describe each of the fields, and figure out how to write a rule to catch this exploit.

There are a few things to note with RPC:

• Numbers are written as uint32s, taking four bytes. The number 26 would show up as 0x0000001a.
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• Strings are written as a uint32 specifying the length of the string, the string, and then null bytes to pad the length
of the string to end on a 4 byte boundary. The string “bob” would show up as 0x00000003626f6200.

89 09 9c e2 - the request id, a random uint32, unique to each request
00 00 00 00 - rpc type (call = 0, response = 1)
00 00 00 02 - rpc version (2)
00 01 87 88 - rpc program (0x00018788 = 100232 = sadmind)
00 00 00 0a - rpc program version (0x0000000a = 10)
00 00 00 01 - rpc procedure (0x00000001 = 1)
00 00 00 01 - credential flavor (1 = auth\_unix)
00 00 00 20 - length of auth\_unix data (0x20 = 32

## the next 32 bytes are the auth\_unix data
40 28 3a 10 - unix timestamp (0x40283a10 = 1076378128 = feb 10 01:55:28 2004 gmt)
00 00 00 0a - length of the client machine name (0x0a = 10)
4d 45 54 41 53 50 4c 4f 49 54 00 00 - metasploit

00 00 00 00 - uid of requesting user (0)
00 00 00 00 - gid of requesting user (0)
00 00 00 00 - extra group ids (0)

00 00 00 00 - verifier flavor (0 = auth\_null, aka none)
00 00 00 00 - length of verifier (0, aka none)

The rest of the packet is the request that gets passed to procedure 1 of sadmind.

However, we know the vulnerability is that sadmind trusts the uid coming from the client. sadmind runs any request
where the client’s uid is 0 as root. As such, we have decoded enough of the request to write our rule.

First, we need to make sure that our packet is an RPC call.

content:"|00 00 00 00|"; offset:4; depth:4;

Then, we need to make sure that our packet is a call to sadmind.

content:"|00 01 87 88|"; offset:12; depth:4;

Then, we need to make sure that our packet is a call to the procedure 1, the vulnerable procedure.

content:"|00 00 00 01|"; offset:16; depth:4;

Then, we need to make sure that our packet has auth unix credentials.

content:"|00 00 00 01|"; offset:20; depth:4;

We don’t care about the hostname, but we want to skip over it and check a number value after the hostname. This is
where byte test is useful. Starting at the length of the hostname, the data we have is:

00 00 00 0a 4d 45 54 41 53 50 4c 4f 49 54 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00

We want to read 4 bytes, turn it into a number, and jump that many bytes forward, making sure to account for the
padding that RPC requires on strings. If we do that, we are now at:
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00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00

which happens to be the exact location of the uid, the value we want to check.

In english, we want to read 4 bytes, 36 bytes from the beginning of the packet, and turn those 4 bytes into an integer
and jump that many bytes forward, aligning on the 4 byte boundary. To do that in a Snort rule, we use:

byte_jump:4,36,align;

then we want to look for the uid of 0.

content:"|00 00 00 00|"; within:4;

Now that we have all the detection capabilities for our rule, let’s put them all together.

content:"|00 00 00 00|"; offset:4; depth:4;
content:"g00 01 87 88|"; offset:12; depth:4;
content:"|00 00 00 01|"; offset:16; depth:4;
content:"|00 00 00 01|"; offset:20; depth:4;
byte_jump:4,36,align;
content:"|00 00 00 00|"; within:4;

The 3rd and fourth string match are right next to each other, so we should combine those patterns. We end up with:

content:"|00 00 00 00|"; offset:4; depth:4;
content:"|00 01 87 88|"; offset:12; depth:4;
content:"|00 00 00 01 00 00 00 01|"; offset:16; depth:8;
byte_jump:4,36,align;
content:"|00 00 00 00|"; within:4;

If the sadmind service was vulnerable to a buffer overflow when reading the client’s hostname, instead of reading the
length of the hostname and jumping that many bytes forward, we would check the length of the hostname to make
sure it is not too large.

To do that, we would read 4 bytes, starting 36 bytes into the packet, turn it into a number, and then make sure it is not
too large (let’s say bigger than 200 bytes). In Snort, we do:

byte_test:4,>,200,36;

Our full rule would be:

content:"|00 00 00 00|"; offset:4; depth:4;
content:"|00 01 87 88|"; offset:12; depth:4;
content:"|00 00 00 01 00 00 00 01|"; offset:16; depth:8;
byte_test:4,>,200,36;
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Chapter 4

Making Snort Faster

4.1 MMAPed pcap

On Linux, a modified version of libpcap is available that implements a shared memory ring buffer. Phil Woods
(cpw@lanl.gov) is the current maintainer of the libpcap implementation of the shared memory ring buffer. The shared
memory ring buffer libpcap can be downloaded from his website at http://public.lanl.gov/cpw/.

Instead of the normal mechanism of copying the packets from kernel memory into userland memory, by using a shared
memory ring buffer, libpcap is able to queue packets into a shared buffer that Snort is able to read directly. This change
speeds up Snort by limiting the number of times the packet is copied before Snort gets to perform its detection upon
it.

Once Snort linked against the shared memory libpcap, enabling the ring buffer is done via setting the enviornment
variable PCAP FRAMES. PCAP FRAMES is the size of the ring buffer. According to Phil, the maximum size is
32768, as this appears to be the maximum number of iovecs the kernel can handle. By using PCAP FRAMES=max,
libpcap will automatically use the most frames possible. On Ethernet, this ends up being 1530 bytes per frame, for a
total of around 52 Mbytes of memory for the ring buffer alone.
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Chapter 5

Snort Development

Currently, this chapter is here as a place holder. It will someday contain references on how to create new detection
plugins and preprocessors. End users don’t really need to be reading this section. This is intended to help developers
get a basic understanding of whats going on quickly.

If you are going to be helping out with Snort development, please use the HEAD branch of cvs. We’ve had problems
in the past of people submitting patches only to the stable branch (since they are likely writing this stuff for their own
IDS purposes). Bugfixes are what goes into STABLE. Features go into HEAD.

5.1 Submitting Patches

Patches to Snort should be sent to the snort-devel@lists.sourceforge.net mailing list. Patches should done
with the command diff -nu snort-orig snort-new.

5.2 Snort dataflow

First, traffic is acquired from the network link via libpcap. Packets are passed through a series of decoder routines that
first fill out the packet structure for link level protocols then are further decoded for things like TCP and UDP ports.

Packets are then sent through the registered set of preprocessors. Each preprocessor checks to see if this packet is
something it should look at.

Packets are then sent through the detection engine. The detection engine checks each packet against the various
options listed in the Snort rules files. Each of the keyword options is a plugin. This allows this to be easily extensible.

5.2.1 Preprocessors

For example, a TCP analysis preprocessor could simply return if the packet does not have a TCP header. It can do this
by checking:

if (p->tcph==null)
return;

Similarly, there are a lot of packet flags available that can be used to mark a packet as “reassembled” or logged. Check
out src/decode.h for the list of pkt * constants.
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5.2.2 Detection Plugins

Basically, look at an existing output plugin and copy it to a new item and change a few things. Later, we’ll document
what these few things are.

5.2.3 Output Plugins

Generally, new output plugins should go into the barnyard project rather than the Snort project. We are currently
cleaning house on the available output options.

5.3 The Snort Team

Creator and Lead Architect Marty Roesch

Lead Snort Developers Marc Norton
Andrew Mullican
Steve Sturges

Snort Rules Maintainer Brian Caswell
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Alex Kirk
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Matt Watchinski

Win32 Maintainer Chris Reid

RPM Maintainers JP Vossen
Daniel Wittenberg

Inline Developers Victor Julien
Rob McMillen
William Metcalf

Major Contributors Daniel Roelker
Andrew Baker
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Scott Campbell
Roman D.
Michael Davis
Chris Green
Jed Haile
Jeremy Hewlett
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Chad Kreimendahl
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Phil Wood
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