
http://www.yassl.com
mailto:info@yassl.com
phone: +1 206 369 4800

CyaSSL Extensions Reference

1) Startup and Exit

All applications should call InitCyaSSL() before using the library and call FreeCyaSSL()
at program termination. Currently these functions only initialize and free the shared
mutex for the session cache in multi-user mode but in the future they may do more so
it's always a good idea to use them.

2) Compression

CyaSSL supports data compression with the zlib library. The ./configure build system
detects the presence of this library, if you're building in some other way define the
constant HAVE_LIBZ and include the path to zlib.h for your includes. Compression is
off by default for a given cipher, to turn it on, use the
function CyaSSL_set_compression() before SSL connecting or accepting. Both the
client and server must have compression turned on in order for compression to be used.



3) CyaSSL Debugging

CyaSSL has support for debugging through log messages in environments where
debugging is limited. To turn logging on use the function CyaSSL_Debugging_ON()
and to turn it off use CyaSSL_Deubgging_OFF(). In a normal build (release mode)
these functions will have no effect. In a debug build define DEBUG_CYASSL to ensure
these functions are turned on.

4) Domain Name check for server certificate

CyaSSL has an extension on the client that automatically checks the domain of the
server certificate. In OpenSSL mode nearly a dozen function calls are needed to
perform this. CyaSSL checks that the date of the certificate is in range, verifies the
signature, and additionally verifies the domain if you call

CyaSSL_check_domain_name(SSL* ssl, cons char* dn)

before calling SSL_connect(). CyaSSL will match the X509 issuer name of peer's
server certificate against dn (the expected domain name). If the names match
SSL_connect() will proceed normally, however if there is a name mismatch,
SSL_connect() will return a fatal error and SSL_get_error() will return
DOMAIN_NAME_MISMATCH.

Checking the domain name of the certificate is an important step that verifies the server
is actually who it claims to be. This extension is intended to ease the burden of
performing the check.

5) No Filesystem and using Certificates

Normally a filesystem is used to load private keys, certificates, and CAs. Since CyaSSL
is sometimes used in environments without a full filesystem an extension to use
memory buffers instead is provided. To use the extension define the constant
NO_FILESYSTEM and the following functions will be made available:

int CyaSSL_CTX_load_verify_buffer(SSL_CTX*, const unsigned char*, long)
int CyaSSL_CTX_use_certificate_buffer(SSL_CTX*,const unsigned char*,long,int)
int CyaSSL_CTX_use_PrivateKey_buffer(SSL_CTX*,const unsigned char*,long,int)
int CyaSSL_CTX_use_certificate_chain_buffer(SSL_CTX*,

const unsigned char*,long)



Use these functions exactly like their counterparts that are named file instead of buffer.
And instead of providing a file name provide a memory buffer.

6) HandShake CallBack

CyaSSL has an extension that allows a HandShake CallBack to be set for connect or
accept. Use the extended functions:

int CyaSSL_connect_ex(SSL*, HandShakeCallBack, TimeoutCallBack, Timeval)
int CyaSSL_accept_ex(SSL*, HandShakeCallBack, TimeoutCallBack, Timeval)

HandShakeCallBack is defined as:

typedef int (*HandShakeCallBack)(HandShakeInfo*);

HandShakeInfo is defined in openssl/cyassl_callbacks.h (which should be added to a
non-standard build):

typedef struct handShakeInfo_st {
char cipherName[MAX_CIPHERNAME_SZ + 1]; /* negotiated cipher */
char packetNames[MAX_PACKETS_HANDSHAKE][MAX_PACKETNAME_SZ+1];

/* SSL packet names */
int numberPackets; /* actual # of packets */
int negotiationError; /* cipher/parameter err */

} HandShakeInfo;

No dynamic memory is used since the maximum number of SSL packets in a
handshake exchange is known. Packet names can be accessed through
packetNames[idx] up to numberPackets. The callback will be called whether or not a
handshake error occured. Example usage is also in the client example.

7) Timeout Callback

The same extensions as above are used, they can call be called with either, both, or
neither callbacks. TimeoutCallback is defined as:

typedef int (*TimeoutCallBack)(TimeoutInfo*);

Where TimeoutInfo looks like:



typedef struct timeoutInfo_st {
char timeoutName[MAX_TIMEOUT_NAME_SZ + 1]; /* timeout Name */
int flags; /* for future use*/
int numberPackets; /* actual # of packets */
PacketInfo packets[MAX_PACKETS_HANDSHAKE]; /* list of all packets */
Timeval timeoutValue; /* timer that caused it */

} TimeoutInfo;

Again, no dynamic memory is used for this structure since a maximum number of SSL
packets is known for a handshake. Timeval is just a typedef for struct timeval.

PacketInfo is defined like this:

typedef struct packetInfo_st {
char packetName[MAX_PACKETNAME_SZ + 1]; /* SSL name */
Timeval timestamp; /* when it occured */
unsigned char value[MAX_VALUE_SZ]; /* if fits, it's here */
unsigned char* bufferValue; /* otherwise here (non 0) */
int valueSz; /* sz of value or buffer */

} PacketInfo;

Here, dynamic memory may be used. If the SSL packet can fit in value then that's
where it's placed. valueSz holds the length and bufferValue is 0. If the packet is too big
for value, only Certificate packets should cause this, then the packet is placed in
bufferValue. valueSz still holds the size.

If memory is allocated for a Certificate packet then it is reclaimed after the callback
returns. The timeout is implemented using signals, specifically SIGALRM, and is thread
safe. If a previous alarm is set of type ITIMER_REAL then it is reset, along with the
correct handler, afterwards. The old timer will be time adjusted for any time CyaSSL
spends processing. If an existing timer is shorter than the passed timer, the existing
timer value is used. It is still reset afterwards. An existing timer that expires will be
reset if has an interval associated with it. The callback will only be issued if a timeout
occurs.

See the client example for usage.



8) Pre Shared Keys

CyaSSL has added support for two ciphers with pre shared keys:

TLS_PSK_WITH_AES_256_CBC_SHA
TLS_PSK_WITH_AES_128_CBC_SHA

These new suites are automatically built into CyaSSL though they can be turned off at
build time with the constant NO_PSK. To only use these ciphers at runtime use the
function SSL_CTX_set_cipher_list().

On the client use the function SSL_CTX_set_psk_client_callback() to setup the
callback. The client example in CyaSSL_Home/examples/client/client.c gives example
usage for setting up the client identity and key, though the actual callback is
implemented in exampes/test.h.

CyaSSL supports identities and hints up to 128 octets and pre shared keys up to 64
octets.

9) TLS 1.1 and 1.2

CyaSSL easily supports TLS 1.1 and TLS 1.2. You can use them by using the
functions:

TLSv1_1_server_method(void);
TLSv1_1_client_method(void);

for TLS 1.1 or for TLS 1.2:

TLSv1_2_server_method(void);
TLSv1_2_client_method(void);



10) RSA Key Generation

CyaSSL supports RSA key generation of varying lengths up to 4096 bits. Key
generation is off by default but can be turned on during the ./configure process with:

--enable-keygen

or by defining CYASSL_KEY_GEN in Windows or non-standard environments.
Creating a key is easy, only requiring one function from rsa.h:

int MakeRsaKey(RsaKey* key, int size, long e, RNG* rng);

Where size is the length in bits and e is the public exponent, using 65537 is usually a
good choice for e. The following from ctaocrypt/test/test.c gives an example creating an
RSA key of 1024 bits:

RsaKey genKey;
RNG rng;
int ret;

InitRng(&rng);
InitRsaKey(&genKey, 0);

ret = MakeRsaKey(&genKey, 1024, 65537, &rng);
if (ret < 0)

/* ret contains error */;

The RsaKey genKey can now be used like any other RsaKey. If you need to export the
key CyaSSL provides both DER and PEM formatting in asn.h. Always convert the key
to DER format first, and then if you need PEM use the generic DerToPem function like
this:

byte der[4096];
int derSz = RsaKeyToDer(&genKey, der, sizeof(der));
if (derSz < 0)

/* derSz contains error */;

The buffer der now holds a DER format of the key. To convert the DER buffer to PEM
use the conversion function:

byte pem[4096];
int pemSz = DerToPem(der, derSz, pem, sizeof(pem),

PRIVATEKEY_TYPE);



if (pemSz < 0)
/* pemSz contains error */;

The last argument of DerToPem takes a type parameter, usually either
PRIVATEKEY_TYPE or CERT_TYPE. Now the buffer pem holds the PEM format of
the key.

11) Certificate Generation

CyaSSL now supports self-signed x509 v3 certificate generation. Certificate generation
is off by default but can be turned on during the ./configure process with:

--enable-certgen

or by defining CYASSL_CERT_GEN in Windows or non-stanard environments.

Before a certificate can be generated the user needs to provide information about the
subject of the certificate. This information is contained in a structure from asn.h named
Cert:

/* for user to fill for certificate generation */
typedef struct Cert {

int version; /* x509 version */
byte serial[SERIAL_SIZE]; /* serial number */
int sigType; /* signature algo type */
CertName issuer; /* issuer info */
int daysValid; /* validity days */
int selfSigned; /* self signed flag */
CertName subject; /* subject info */

} Cert;

Where CertName looks like:

typedef struct CertName {
char country[NAME_SIZE];
char state[NAME_SIZE];
char locality[NAME_SIZE];
char org[NAME_SIZE];
char unit[NAME_SIZE];
char commonName[NAME_SIZE];
char email[NAME_SIZE];

} CertName;



Before filling in the subject information an initialization function needs to be called like
this:

Cert myCert;
InitCert(&myCert);

InitCert() sets defaults for some of the variables including setting the version to 3 (0x02),
the serial number to 0 (randomly generated), the sigType to MD5_WITH_RSA, the
daysValid to 500, and selfSigned to 1 (TRUE). Currently only MD5_WITH_RSA (by far
the most common) and self signed are supported though the next release will allow
other signers and other signature types.

Now the user can initialize the subject information like this example from ctaocrypt/test/
test.c

strncpy(myCert.subject.country, "US", NAME_SIZE);
strncpy(myCert.subject.state, "OR", NAME_SIZE);
strncpy(myCert.subject.locality, "Portland", NAME_SIZE);
strncpy(myCert.subject.org, "yaSSL", NAME_SIZE);
strncpy(myCert.subject.unit, "Development", NAME_SIZE);
strncpy(myCert.subject.commonName, "www.yassl.com", NAME_SIZE);
strncpy(myCert.subject.email, "info@yassl.com", NAME_SIZE);

Then the certificate can be generated using the variables genKey and rng from the
above key generation example (of course any valid RsaKey or RNG can be used):

byte derCert[4096];

int certSz = MakeCert(&myCert, derCert, sizeof(derCert), &key,
&rng);

if (certSz < 0)
/* certSz contains the error */;

The buffer derCert now contains a DER format of the certificate. If you need a PEM
format of the certificate you can use the generic DerToPem function and specify the
type to be CERT_TYPE like this:



byte pemCert[4096];

int pemCertSz = DerToPem(derCert, certSz, pemCert,
sizeof(pemCert), CERT_TYPE);

if (pemCertSz < 0)
/* pemCertSz contains error */;

Now the buffer pemCert holds the PEM format of the certificate.

Coypright (C) 2010 Sawtooth Consulting Ltd. All rights reserved.


